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Abstract. Software maintenance is a widely studied area of software engineer-
ing that it is particularly important in safety-critical and mission-critical appli-
cations where defects may have huge impact and code needs to be checked 
carefully through the analysis of data collected using a number of tools devel-
oped to investigate specific aspects. However, such tools are often not available 
to practitioners preventing them from applying the most recent and advanced 
approaches to industrial projects. This paper is an initial investigation about 
code analysis tools used to perform research studies on software maintenance 
prediction. We focus on the identification of tools that are available and can be 
used by practitioners to apply the same maintenance approaches described in 
published academic papers. 
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1 Introduction 

Software maintenance is a deeply studied area with hundreds of studies performed 
every year and published in top international conferences and journals. In many cases, 
these studies are empirical ones and based on data collected from a wide range of 
sources and then analyzed using a variety of mathematical techniques [5]. Moreover, 
most of the research activities and results presented in such studies are based on the 
usage of a wide range of software tools. 

The code analysis tools used in these studies are very diverse and, in many cases, are 
ad-hoc developed prototypes used only to perform a single study [5]. In such cases, the 
developed tools are usually not maintained and are often not even released by the au-
thors. This makes the replication of such studies very difficult and the adoption of the 
proposed approach nearly impossible for practitioners. 

This is a clear limitation of the research activities in the software maintenance area 
that need to be more open to external validation of the performed researches to push 
ahead the state of the art and have a real impact on the practice. 

As pointed out in a recent analysis of the evolution of the software maintenance 
research area [5], maintenance models have increased their complexity over the last 40 
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years using more sophisticated mathematical approaches for data analysis. However, 
this increase of complexity does not result in an improvement of performance of the 
developed models and the external validation of the approaches is almost inexistent, 
also due to the lack of availability of the tools used to extract and analyze the data. For 
such reasons, researchers are almost reinventing the wheel in each study and do not 
leverage on the work performed by others. 

To help researchers and practitioners in the identification of available code analysis 
tools that have been used to publish scientific studies, we have classified them with 
regard to their support for software maintenance activities. We performed a review of 
the available tools, reporting both on commercial and open source products. Since the 
tools cannot be reliably retrieved from bibliographic sources, we adapted the systematic 
mapping approach defined by Petersen [1] by adding a step specifically intended for 
the identification of tools. We considered code analysis tools supporting maintenance 
activities as defined in the ISO/IEC 25010:2011 SQuaRE [4] (modularity, reusability, 
analyzability, modifiability, testability, reliability).  

Only a few previous works have compared existing code analysis tools for specific 
software maintenance areas [6] [7] [8]. Unlike our work, [6] reports an overview on 
search-based optimization techniques, proposing four tools for software modularization 
support. Unfortunately, none of these tools are available anymore. 

In [7], the authors compare three static code analysis tools (Fortify SCA, Splint, and 
Frama-C). However, the comparison focuses on the point of view of detecting security 
vulnerabilities. 

In [8], the authors highlight the issues of detecting Java concurrency bugs using 
static code analysis tools (FindBugs, CheckThread, RacerX, and RELAY).  

Moreover, to the best of our knowledge, no previous works exists that systematically 
identifies existing and available code analysis tools for software maintenance. 

The remainder of this paper is structured as follows: in Section 2, we introduce the 
adopted methodology; in Section 3 and 4, we present and discuss the results; in Section 
5, we point out the threats to the validity of this study; finally, in Section 6, we draw 
the conclusions and sketch possible future work. 

2 Methodology 

To perform the survey in a systematic way and achieve results that can be considered 
valid by the scientific community, we have analyzed in deep the most popular ap-
proaches for performing reviews in a coherent and replicable way. In particular, we 
have considered: Systematic Literature Review (SLR) [2], Multivocal Literature Re-
view (MLR) [3], Systematic Mapping (SM) [1]. We have realized that none of them 
are suitable for our study for a number of reasons: 

1. SLRs focus only on peer-reviewed publications. However, many tools are not 
described in usual academic papers that are subject to peer evaluations. 

2. MLRs give the same level of importance to peer and non-peer reviewed 
sources. Even if they fit better our goals, they do not provide a specific proce-
dure to integrate the results and weight the contributions. 
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3. SMs are very good for very initial studies and collect basic information in an 
unstructured way. However, they are too generic and do not provide a rigorous 
enough framework for the identification of the tools we are interested to in-
clude in this study. 

Based on such considerations, we have realized that an extension of the SM approach 
was more suitable to address the problem we face in this investigation (Section 2.2). 

2.1 Goal and Research Question 

The goal of this study is to identify and classify code analysis tools for supporting soft-
ware maintenance that have been adopted in industry and validated academically.  

Therefore, we define our main Research Questions (RQs): 
• RQ1: Which are the most commonly used code analysis tools to support 

software maintenance? (We aim at classifying the tools) 
• RQ2: Have these tools been adopted in research? (We aim at identifying 

the most popular tools used to perform research activities) 

2.2 Research Strategy 

In our work, we follow a different procedure compared to the ones commonly adopted 
in systematic mappings, systematic literature reviews, and multivocal literature reviews 
since all of them have the limitations described at the beginning of Section 2. 

Therefore, the process developed is based on the following steps: 
Step 1: Tools Identification. We report the search strategy adopted for identifying 

the tools available on the web. 
Step 1.1: Keywords definition. Based on our RQs, we define the search terms ap-

plied for the identification of the tools, as presented in Table 1. We adopted the PICO 
structure (Population, Intervention, Comparison, and Outcome), skipping the Outcome 
and Comparison terms, since the focus of our research is a general investigation, as 
suggested by Kitchenham and Charters [2]. To retrieve a reliable set of tools, we ex-
panded the term “maintenance” with the terms included in the maintenance sub-char-
acteristics defined in the standard ISO/IEC 25010:2011 SQuaRE [4]. 

Table 1. The search terms. 

P: Software maintainability P1 terms: “software”, “maintainability”, “maintenance”, “modularity”, 

“reusability”, “analyzability”, “modifiability”, “testability”, “reliability” 
I: tool I1 terms: “tool*”, “static analysis”, “dynamic analysis” 

 
Step 1.2: Bibliographic Sources definition. Differently from the traditional ap-

proach for systematic review, instead of searching in bibliographic sources suggested 
by Kitchenham and Charters [2], we applied the search terms in google.com. This 
choice allowed us to broaden the search to non-scientific results to get the most com-
prehensive list of tools. 
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Step 1.3: Inclusion and exclusion criteria definition. We defined inclusion and 
exclusion criteria to identify the most relevant tools. We obtained the final criteria (Ta-
ble 2) by means of refinements from an initial set of inclusion and exclusion criteria. 

Table 2. The search terms. 

Inclusion Criteria Exclusion Criteria 

Open source or commercial tool 

Tool not available (e.g., not actively developed, never released, etc.) 
Tool does not directly support maintenance activities (e.g., IDEs) 

Tools that are not based on source code analysis (e.g., issue tracking) 

 
Step 1.4: Search and Selection process. Two authors separately searched in the 

selected bibliographic source the tools according to the defined search keywords. They 
manually checked each retrieved tool by means of visiting the official web page and 
they applied the inclusion and exclusion criteria. In case of disagreement between the 
two authors, the third author was involved so as to apply the criteria. The search and 
selection process returned 25 tools. 

From the retrieved 60 tools, we rejected 14 tools related to hardware maintenance, 
18 research prototypes, including 14 not available anymore and 4 never mentioned in 
industrial case studies. Finally, we also rejected three IDEs tools. 

Step 2: Popularity Assessment. The popularity of the tools identified in the previ-
ous step needs to be evaluated. This is an important step of the procedure, since it allows 
to consider differently tools that have been used or mentioned online very rarely. The 
results of the adoption are very important for practitioners: most of the companies can-
not risk adopting a prototype or a tool with limited support and/or a narrow community.  

For this purpose, we have considered the trend of searches in the last 5 years using 
Google Trends and the number of hits reported in google.com. Even if the numbers 
provided are not absolute, they help us in investigating the turnover. 

These two values can be used as proxy for assessing the adoption of a tool by prac-
titioners. Beside a number of Google results does not imply the same number of instal-
lations, we can assume that if tool “A” is mentioned 100K more than tool “B”, the tool 
“A” is used and adopted much more than “B”.  

The trend reported in Google Trends, when paired with the number of results, can 
be a good sign of adoption trend of a tool. 

The result of this step is the number of results reported in google.com and its 5-years 
trend reported in Google Trends (Decreasing, Increasing, Constant, No-Trend). 

Step 3: Papers reporting experience using the selected tools. We identified papers 
reporting the usage of the identified tools to prove the adoption of the tools reported in 
the scientific literature. Moreover, we investigated existing case studies reporting the 
usage of the tools in industrial contexts.  

To investigate the popularity of the tools in the research community, we adopted the 
traditional approach based on citations in scientific publications. We analyzed the tool 
adoption by identifying peer-reviewed publications reporting their usage. The number 
of reported citations of the tools can be considered as a proxy-measure for assessing the 
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suitability of the tool to support repeatable research investigations that could be per-
formed by advanced practitioners. 

Step 3.1: Keywords Definition. In our case, the search terms needed to be defined 
by combining the search terms identified in Table 1 and the list of tools retrieved.  

Step 3.2: Identification of bibliographic sources. A search process can be con-
ducted automatically or manually across specific journals and conferences. To better 
address this step, we decided to combine both procedures. 

Step 3.3: Inclusion and exclusion criteria definition. The results obtained from 
the search were then filtered by applying the inclusion and exclusion criteria to the title 
and the abstract. In this step, we excluded research prototype tools identified in the 
previous step that were never mentioned in the industrial case studies reported in the 
selected papers, even if they are available and even if they have existing citations in the 
scientific literature that does not include an industrial case study. 

Step 3.4: Search and Selection process. Two authors separately searched in the 
selected bibliographic source the tools according to the defined search keywords. They 
manually evaluated each retrieved paper and they applied the inclusion and exclusion 
criteria. In case of disagreement between the two authors, the third author was involved 
so as to apply the criteria. The results of this step are reported in Table 3. 

2.3 Data Extraction 

In this step, we extract the relevant data from the tools that passed the inclusion and 
exclusion criteria. 

3 Results 

In the Step 1 of the Search Strategy approach (Tools identification), we retrieved 60 
tools. Thanks to the inclusion and exclusion criteria we rejected 35 tools, resulting in 
25 selected tools for this review (Table 3).   

About the rejected tools, they are all research prototypes and in most of the cases 
executables or source code are no longer available. Unfortunately, some research pro-
totypes that are also mentioned in industrial case studies are not available anymore 
(PROM [11] [13] [14], MacXim [17] [18] and RIGI [12]), while the four available tools 
are rarely mentioned in research works and never in industrial case studies. 
3.1 RQ1. Which are the most commonly used tools to support software 

maintenance? 

The most mentioned tools in google.com are Findbugs, Fortify, JTest, and PMD, all 
above 500K citations. However, analyzing the trend of the results in Google, no signif-
icant changes emerged or, at least, the tools with an increasing trend still have a very 
low number of results compared with the remaining tools. The only partial exception is 
SonarQube with over 400K citation and an increasing trend. This result also supports 
the importance of the tools reported.  

To understand the purpose of this tools, we classified them based on the maintenance 
activities they can support.   
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Table 3. The tools classification. 

Tool Goal 
Supported 
Language 

License Cit. 
Google 
Results 

Trend 

CodeSonar Code review Java, C, C++ Comm. 347 56,500 = 
Findbugs Bug detection Java LGPL 346 656,000 â 
Coverity Bug detection/Testing Java, C, C++ Comm. 315 235,000 = 
PMD Bug detection/Testing Java LGPL 238 502,000 = 
Polyspace Run-time errors C, C++ Comm. 212 110,000 = 
Checkstyle Coding standards Java LGPL 155 438,000 â 
Klocwork Safety, reliability Java, C, C++, C# Comm. 132 79,400 â 
Parasoft Jtest Testing Java. C, C++, .NET Comm. 114 548,000 = 

Squale Code review 
Java, C, C++, .NET, 

PHP, Cobol 
LGPL 110 291,000 á 

IBM AppScan Testing, Security flaws  Java Comm. 86 364,000 = 
JLint Code Review Java LGPL 86 141,000 = 

SonarQube Code review All Comm. Lang. 
LGPL + 

Comm.  
74 417,000 á 

Lattix 
Technical debt, Modu-

larity, Reusability 
Java, C, C++ Comm. 69 93,700 â 

Fortify Static 

Code Analyzer 
Code analysis, vulnera-

bility detection 
All common lang. Comm. 50 581,000 = 

ConQAT Code review 
Java, C#, C++, 

ABAP, ADA 
Comm. 37 25,800 = 

Ndepend Dependency analysis .NET Comm. 35 85,600 â 
CAST Code review All Comm. languages Comm. 24 134,000 á 
Structure101 Architecture analysis Java, .Net Comm. 24 131,000 = 
LDRA testbed  Dynamic code analysis java Comm. 20 348,000 = 

Axivion Bau-

haus Suite 

Reverse engineering 

and architecture recov-

ery 

Ada, C, C++, C# and 

Java 
Comm. 3 1,710 = 

source meter Code review 
Java, C/C++, C#, Py-

thon and RPG 

Freeware 

and 

Comm. 
2 262,000 = 

Jarchitect Structural code analysis Java Comm. 2 65,700 = 
Imagix Structural code analysis Java, C, C++ Comm. 1 399,000 = 

Codacy Code review 

JavaScript, Scala, 

Java, PHP, Python, 

CoffeeScript, CSS, 

Ruby, Swift, C/C++. 

Comm. 1 83,100 á 

Parasoft  

dotTEST 
Code review C/C++,  Java,  .NET Comm. 1 25,200 â 
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Code Review is one of the most often considered activities by the selected tools, 
with 33% related tools, mainly for code understandability, support for code inspection, 
and error prediction. Reverse Engineering, Structural Code Analysis, and Testing are 
also popular activities, with 12.5% of the tools supporting each of them. Moreover, 
other tools focus on specialized activities such as Dynamic Code Analysis, Analysis of 
Technical Debt, Modularity and Reusability, and Security Flaws Analysis.  

Considering the license of the selected tools, 83% of them are distributed with a 
commercial license, while the remaining ones are freely available with open source 
licenses (mainly LGPL). 

Considering the supported programming languages, Java is the most frequently con-
sidered one, immediately followed by C and C++.  

 
3.2 RQ2. Have these tools been adopted in research? 

The selected tools have an average of 90 citations. However, the average is highly 
pushed up by the first three tools (CodeSonar, FindBugs, and Coverity) with more than 
250 citations, which together account for nearly half of all citations. Fifteen tools have 
a number of citations below the average, with six tools having fewer than three cita-
tions.  

Several academic works adopt tools with a very low number of results in 
google.com. As example CodeSonar and Polyspace are used by several research works 
but they are not well known or with a very low number of Google results. Moreover, 
these tools are mainly applied in non-industrial case studies.  

This confirms the low level of adoption of several tools in academic works, including 
industrial case studies. In 60% of the cases, the interest in such tools (according to 
Google Trends) is almost constant, while in 16% of the cases is increasing and in 24% 
of the cases is decreasing. Therefore, we can conjecture that in most of the cases users 
could be satisfied with the tools they use or there are no better alternatives they can 
consider. 

4 Discussion 

Focusing on the two research questions, we have found out that the tools commonly 
used by practitioners and by researchers are very different, with only a single common 
tool among the most popular in the two cases: FindBugs. 

We have also analyzed if there is a correlation between then citations in google.com 
and the ones in the scientific literature but the results were not significant. Even accept-
ing an unusually low level of confidence, the correlation is very weak (0.35) showing 
that the two sets of citations are almost completely unrelated from each other. 

These facts could be due to several reasons that need further investigation (e.g., dif-
ficulty of usage, different objectives, etc.). However, it is quite clear that the practition-
ers’ and the researchers’ communities value different tools to perform their work. 

In any case, the most popular tools in research have a constant or negative trend for 
practitioners, the same happens for the most popular tools for practitioners. This is a 
clear evidence that neither set of tools are actually able to satisfy practitioners and there 
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are no clear alternatives. The increasing trends are very limited and focused on tools 
with a low level of popularity, this could be related to the fact that they are being tested 
by practitioners, but such tools are not very satisfying and/or being able to be adopted 
by a large set of users. 

We can also notice that almost all the tools identified are commercial and the avail-
ability of open source ones is very limited. In particular, the most used tools in research 
are available for free (as open source or with a free license for a subset of the features) 
while most of the tools used by practitioners are commercial. Since most researchers 
have limited budgets, it may happen that the features and the quality of the tools could 
be considered of less importance compared to the free availability. This may affect their 
usage in research projects and their citation in research papers. However, this is an 
aspect that needs further investigation. Moreover, tools are commonly used based on 
need and they are not used to continuously support the development process. In the 
selected literature, only two tools were integrated into the development pipeline (So-
narQube and Cast). The integration into a DevOps pipeline, into a continuous monitor 
process, could provide higher benefit on their usage [15][16]. 

Another aspect that needs to be considered is the lack of reliable maintenance models 
developed by researchers 5. Nearly all the models available are specifically developed 
to address a very limited set of projects (in many cases, such projects are proprietary 
and results cannot be replicated) and they lack of external validation, preventing prac-
titioners from applying such models in their specific contexts.  

Such lack of reliable results from the research produces also a lack of tools that prac-
titioners can really use in their daily work. Looking at the excluded tools, we can notice 
that nearly all of them have a very low number of citations. This means that almost no 
research is based on them and they have been developed and used only for a limited 
number of projects (often just one) with the objective of writing a paper and not to 
create a tool able to support the adoption of a model by the community. 

5 Threats to validity 

As suggested by Yin [9], we defined Internal validity, Construct validity and Relia-
bility. Since we do not draw any conclusions about mapping studies or systematic lit-
erature reviews in general, external validity threats are not applicable. 

Moreover, Petersen et al. [10] suggest assessing the quality of a study by means of 
profiling an objectively checklist. We reached an excellent score of 72%, higher than 
the average (33% - 48%) of similar studies [10]. 

Internal validity: Our study does not draw cause-effect relationships. Moreover, 
since our analysis only uses descriptive statistics and basic correlation, the threats are 
minimal. However, we understand that the identification of the citations based on sci-
entific literature might only reflect a portion of the adopted tools, while the analysis of 
gray literature could have provided different results, somehow promoting more tools 
with a bigger community or with a longer history, without considering their quality.  

Construct validity: The measure of popularity could be of this threat. At the best of 
our knowledge there is no way to collect the exact number of users that use a specific 



9 

tool, and therefore the measures we considered as proxy measures, could have affected 
the results. The terms adopted are well known and stable enough to be used as search 
strings.  

Reliability: We defined search terms and applied procedures that can be replicated 
by others. However, we are aware that the same search string applied in google.com 
could return a slightly different set of results that can become relevant in a few years or 
even in a few months. It could be interesting to monitor the evolution over time. 

6 Conclusions and future work 

This paper provides an initial analysis and classification of the static and dynamic 
code analysis tools for supporting and predicting software maintenance that have been 
adopted in industry and validated academically. 

The study focuses on tools that are not just research prototypes and that are available 
to support studies in academic and industrial settings. In particular, we have found out 
that most of the tools used in industrial case studies were no longer available at the time 
of writing, preventing other researchers or practitioners from easily adopting the same 
approaches and analyses by using already existing and tested tools.  

Moreover, most of the widely-adopted tools are commercial ones and there are al-
most no open source communities that are able to build and support such kinds of tools. 
Research prototypes often have a large number of citations in scientific literature but 
are never adopted in industrial case studies. In most of the cases (60%), the interest in 
such tools is quite constant over the years providing a resistance in the dismissal of 
tools or in the adoption of new ones. 

An interesting side result is that a lot of tool prototypes for reliability prediction (e.g. 
[19]) have been developed in the past by researchers, but their usage in industry is very 
limited. Moreover, no commercial tools for reliability prediction were identified from 
the selected toolset. The results of the classification of the selected tools reported in 
Table 3 can be used by researchers to select the most frequently used tools to obtain 
reliable results for their research, to conduct empirical studies, or to perform other work. 
Moreover, results can be beneficial for industry practitioners in to easily access to a 
classification of existing tools used to perform maintenance research studies. 

Another aspect is that almost all the selected tools have been designed to support 
developers in performing some kind of activities (e.g., code reviews, testing, static anal-
ysis, etc.) but they do not include maintenance models to help users in making esti-
mates/predictions. On the contrary, the rejected tools include several ones that imple-
ment such models. Moreover, the tools implementing a model are the least cited ones 
(almost no citations at all). This means that the research activities performed are not 
basing their work on existing results and tools, but new ones are developed. This is a 
sign of immaturity of the field and the need of further research in this area to create 
reusable models and tools that can be adopted by practitioners.  
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