
QualiPSo
Quality Platform for Open Source Software

IST- FP6-IP-034763

Working Document 5.4.2
Test suites and benchmarks for the chosen
set of Open Source projects and artifacts.
Methodology for creating test suites and

benchmarks for arbitrary systems.
Auri Marcelo Rizzo Vincenzi (USP)

Davide Taibi (INS)
Davide Tosi (INS)

Giovanni Denaro (INS)
Leonardo Mariani (INS)

Marcio Eduardo Delamaro (USP)
Marcos Lordello Chaim (USP)

Sandro Morasca (INS)

Due date of deliverable: 31/07/2010

Actual submission date: 31/07/2010

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

This work is partially funded by EU under the grant of IST-FP6-034763.

QualiPSo • 034763 • 5.4.2 • Version 3.0, dated 31/07/2010• Page 1 of 132

Change History

Version Date Statu
s

Author (Partner) Description

2 July, 27 2009 Draft Marcos L. Chaim First version of the draft

2 August, 3
2009

Draft Davide Tosi and
Marcos L. Chaim

T-DOC included in the
first version of the draft

2 October, 27
2009

Final Davide Tosi and
Marcos L. Chaim

Comments of the
reviewer were addressed
by the authors.

3 May, 31 2010 Draft Davide Tosi and
Marcos L. Chaim

Added example of T-
DOC with Macxim

3 May, 31 2010 Draft Davide Tosi and
Marcos L. Chaim

Comments from the
revision addressed

3 July, 30 2010 Draft Davide Tosi and
Marcos L. Chaim

RealEstate size and
coupling metrics added

3 July, 30 2010 Draft Auri Vicenzi and
Marcos L. Chaim

Additional OSS project
testing coverage add

3 July, 31 2010 Final Davide Tosi and
Marcos L. Chaim

Minor corrections

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 2 of 132

EXECUTIVE SUMMARY

We present in this document three different assessments of the testing activity
performed in well-regarded OSS projects: 1) coverage evaluation; 2) maturity
level of testing process; 3) availability of testing documentation.

The first one consisted of evaluating the coverage with respect to structural
testing criteria provided by the test suites developed in OSS projects. Control-
and data-flow based criteria were utilized. Eight OSS projects were analyzed,
namely, HSQLDB, HTTPUnit, JasperReports, JMeter, JUnit, Log4J, PMD and
Velocity. Data shows a modest coverage for HSQLDB, JasperReports, JMeter,
Log4J, and PMD while JUnit and Velocity coverage data is around 50%. The
notable exception is HTTPUnit whose coverage level is above 70%.

We also collected similar control-flow coverage metrics and dynamic coupling
metrics for a particular example – the OSS RealEstate Java [application NCSU,
2009]. To collect the control-flow coverage a different tool was utilized and to
collect the dynamic coupling metrics Aspect-oriented Programming (AOP)
techniques were used. The results of the control-flow metrics show that less
than 50% of the Source Code Lines of Code (SLOC) and of the methods were
exercised by the available test suite. This data is in line with the data collected
for the former OSS projects. We could observe that the dynamic coupling
metrics were easily collected with the AOP resources.

Hence, for the majority of the analyzed projects, the test suites need to improve.
One possible hypothesis for this behaviour is that many tests are not added in
the test suites. A developer may fix or add a new feature, create a test to verify
it, but not add it to the test suite. Furthermore, much of the testing being carried
out in the OSS context is expected to be performed by final users. They might
explore the code of the OSS product but their tests are not registered in test
suites.

Higher statement (nodes) and decision (edges) coverage has been advocated
for Closed-Source Software (CSS). [Beizer 1990] states that node and edge
coverage criteria are the weakest structural testing criteria; though, he
complements that “testing less than this for new software is unconscionable and
should be criminalized.” Formal standards like DO-178B [RTCA 1992] and
ANSI/IEEE 1008-1997 [IEEE 1987] demand 100% statement and branch
coverage for safety critical systems. And [Cornett 2009] discussing about the
minimum acceptable code coverage argues that a 70-80% coverage level is a
reasonable goal for system testing of the majority of software products.

With the exception of a single project, the analyzed OSS projects test suites
need to be improved to reach the 70%-80% level, suggesting that the process
to develop them differ from CSS products process and requires different ways
of evaluating and improving its trustworthiness.

The second assessment consisted of evaluating the level of maturity of the OSS
testing process. To do so, a novel maturity model targeted to OSS testing is
presented. The first task of the OSS testing maturity model (OSS-TMM) is to
identify the “Best Testing Process” (BTP) for a particular OSS project. The BTP

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 3 of 132

is identified by inspecting the project according to a checklist developed to
guide the elicitation of tasks needed to achieve the OSS trustworthiness. Then
the “Actual Testing Process” (ATP) of the OSS project is obtained by checking
the testing tasks actually executed by the community supporting the project.
Depending on the level of compliance of the ATP with respect to the BTP, a
level of maturity is assigned to the OSS project.

To demonstrate its applicability, OSS-TMM was utilized to analyze in detail two
real-life projects, BusyBox and Apache HTTP. In addition, four more
representative OSS projects were assessed with OSS-TMM in order to
correlate their maturity levels with their bug rates to comprehend whether a
higher maturity of the testing process directly means a higher product quality.
Our observations are that OSS-TMM can be easily applied either to small or to
large OSS projects, but the correlation between the level of maturity and bug
rates was verified only partly. OSS-TMM has been also applied internally to
Siemens AG to evaluate the testing maturity level of TPTP (The Eclipse Test
and Performance Tools Platform). The evaluation has been carried out both
collecting information stored into the TPTP repository and by interviewing TPTP
project leaders and developers.

The third assessment carried out was the analysis of 32 OSS projects about the
availability of testing documentation. We have observed a remarkable
deficiency with regards to testing documentation. In our analysis, only one
product provides a complete documentation about internal testing activities. The
difficulty of providing an up-to-date and a reasonable documentation of OSS
products relates to two main reasons: first, documenting development activities
and technological issues is a tedious and unrewarding task; second, data and
information about the OSS project (such as source code, project plans, testing
requirements, etc.) are disaggregated and shared via unstructured channels
such as unofficial forums and mailing lists.

In this document, a framework (called T-DOC) that supports the automatic
generation of test cases documentation, the generation of reports about test
case results, and the archiving of testing documents in central repositories is
proposed. The automatic generation of documentation is facilitated by the
adoption of built-in testing methodologies that simplify the aggregation of testing
data. By introducing T-DOC, we aim at addressing the lack of documentation in
OSS projects due to the use of external testing methodologies that drastically
augments the fragmentation of data. We applied the framework to the OSS
RealEstate Java application to show the applicability and the real benefits of our
solution.

Thus, this document presents both experimental results on the assessment of
the source code provided by OSS projects test suites as well as techniques to
assess and improve the testing process in the context of OSS development.

These assessments and techniques have implications to different stakeholders.

• From a software company's point of view:

o The assessment of the OSS test suite coverage shows how
thorough the testing of the OSS functional requirements was;

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 4 of 132

o The application of OSS-TMM simplifies the internal process of
testing OSS products by suggesting a rapid way for identifying a
testing plan that best fits the properties and characteristics of the
OSS product; it simplifies the assessment or certification process
of their OSS products by comparing their available testing;

o The use of T-DOC favours the creation of testing documentation
that contributes to assess the trustworthiness of an OSS.

• From the developer's point of view:

o The assessment of the OSS test suite coverage shows how much
effort is needed to achieve an established level of coverage;

o The application of OSS-TMM simplifies and speeds up testing
activities by guiding developers in selecting testing strategies and
methodologies depending on the properties and characteristics of
the OSS product; it increases the quality and the trustworthiness
perception of the OSS by improving the testing activity.

o T-DOC facilitates the production of a comprehensive testing
documentation that originally comes from distributed developers.

• From the end-user's point of view:

o The coverage information is one element which allows the end-
user to make an informed decision on using or not using the OSS;

o The application of OSS-TMM simplifies and speeds up the
selection of an OSS product by evaluating the maturity of the
testing process as an evaluation element about the whole quality
and trustworthiness of the product;

o The T-DOC automatic generated documentation allows the end-
user to assess the testing activity performed in OSS project.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 5 of 132

Document Information

IST Project
Number

FP6 – 034763 Acronym QualiPSo

Full title Quality Platform for Open Source Software

Project URL http://www.qualipso.org

Document URL

EU Project officer Michel Lacroix

Deliverable Number 5.4.2 Title Test suites and benchmarks for the chosen set
of Open Source projects and artifacts.
Methodology for creating test suites and
benchmarks for arbitrary systems.

Work package Number 5.4 Title Definition of standard test approaches, test
suites, and benchmarks of Open Source

Software

Activity Number 5 Title Trustworthy Results

Date of delivery Contractual Actual

Status Version 3.0, dated 31/07/2010 final

Nature Report Demonstrator Other

Dissemination
Level

Public Consortium

Abstract
(for dissemination)

We present three different assessments of the testing activity performed in well-regarded OSS
projects based on: 1) coverage evaluation; 2) maturity level of testing process; and 3)
availability of testing documentation. The first one reveals that, for the majority of evaluated
projects, the coverage with respect to structural testing criteria needs improvement, which
suggests OSS projects utilize a different testing process requiring different ways of
trustworthiness evaluation and improvement. The second assessment utilizes a novel maturity
model targeted to OSS testing–the Open-source Software Testing Maturity Model (OSS-
TMM). We utilized OSS-TMM in several projects to evaluate their testing maturity, to assess
the OSS-TMM ease of applicability, and to correlate testing maturity and OSS trustworthiness.
Our final assessment shows that low effort is directed towards developing testing
documentation in OSS projects. To tackle this situation, we introduce the TDOC framework
which objective is to support a team of OSS developers in creating test documentation that will
enhance OSS trustworthiness.

Keywords

Authors (Partner) Auri Marcelo Rizzo Vincenzi (USP), Davide Taibi (INS), Davide Tosi (INS),
Giovanni Denaro (INS), Leonardo Mariani (INS), Marcio Eduardo Delamaro
(USP), Marcos Lordello Chaim (USP), Sandro Morasca (INS)

Responsible
Author

Auri M R Vincenzi Email auri@inf.ufg.br

Partner USP Phone +55 (62) 3521-1181

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 6 of 132

mailto:auri@inf.ufg.br

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 3

TABLE OF CONTENTS ... 7

LIST OF FIGURES .. 9

LIST OF TABLES ... 10

DIFFERENCES WITH RESPECT TO THE PREVIOUS VERSION ... 11

INTRODUCTION .. 12

1.1. Background .. 12

1.2. Objectives ... 14

1.3. Structure ... 15

2.EMPIRICAL EVALUATION OF OSS PROJECTS’ TEST SUITES .. 16

2.1. Structural testing criteria .. 16

2.2. JaBUTi .. 17

2.3. Empirical evaluation ... 17

2.4. Dynamic measures for size and coupling .. 23

2.5. Related work .. 29

2.6. Final remarks .. 30

3.OSS-TMM – OPEN SOURCE SOFTWARE TESTING MATURITY MODEL 32

3.1. Towards a maturity model for Open Source Software 32

3.2. Maturity level .. 33

3.3. OSS issues ... 35

3.4. OSS-TMM-based Process Assessment .. 39

3.5. Preliminary Results .. 41

3.6. Related work .. 50

3.7. Final remarks .. 52

4.T-DOC FRAMEWORK ... 53

4.1. The Lack of OSS Documentation .. 53

4.2. Built-in test in OSS ... 54

4.3. The T-DOC framework ... 56

4.4. Final remarks .. 68

5.CONCLUSIONS ... 69

REFERENCES ... 71

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 7 of 132

APPENDIX A – OSS-TMM CHECKLIST ... 75

APPENDIX B – MACXIM T-DOC DOCUMENTATION .. 83

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 8 of 132

LIST OF FIGURES

FIGURE 1 -- NUMBER OF INTERCEPTED DYNAMIC MESSAGES X NUMBER OF TEST CASES............28

FIGURE 2 -- NUMBER OF INTERCEPTED DYNAMIC CALLS TO DISTINCT CLASSES X NUMBER OF TEST
CASES..28

FIGURE 3 -- NUMBER OF INTERCEPTED CALLS TO DISTINCT METHODS X NUMBER OF TEST CASES.
..29

FIGURE 4 -- NUMBER OF INTERCEPTED DYNAMIC MESSAGES X NUMBER OF TEST CASES............29

FIGURE 5 – OSS-TMM MAIN STEPS...41

FIGURE 6 – AGGREGATING COMPONENTS INTO AN OSS PRODUCT WITH BIT ABILITIES...........55

FIGURE 7 – A BUILT-IN TEST CASE WITH T-DOC COMMENTS FOR THE REALESTATE
APPLICATION..57

FIGURE 8 – ARCHITECTURE OF THE FIRST T-DOC LAYER...58

FIGURE 9 – ARCHITECTURE OF THE SECOND T-DOC LAYER..60

FIGURE 10 – GENERATED INTEGRATION TESTING SCENARIO FOR THE TESTGAINMONEYCARD
ACTION()..61

FIGURE 11 - ARCHITECTURE OF THE THIRD T-DOC LAYER..64

FIGURE 12 - A SAMPLE MACXIM TEST CASE WITH T-DOC COMMENTS...........................66

FIGURE 13 - CORRECT / INCORRECT MACXIM METRICS DISCOVERED BY TEST....................67

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 9 of 132

LIST OF TABLES

TABLE 1 – DESCRIPTION OF OSS PROJECTS...18

TABLE 2 – COMPLEXITY OF OSS PROJECTS..19

TABLE 3 – REQUIREMENT COVERAGE: EXCEPTION-INDEPENDENT CRITERIA............................20

TABLE 4 – REQUIREMENT COVERAGE: EXCEPTION-DEPENDENT CRITERIA..............................21

TABLE 5 – EXCEPTION HANDLERS DATA AT METHOD LEVEL: ALL-NODES-ED CRITERION..........22

TABLE 6 – REQUIREMENT COVERAGE: EXCEPTION-INDEPENDENT AND EXCEPTION-DEPENDENT
CRITERIA...23

TABLE 7 — DYNAMIC SIZE MEASURES RESULTS FOR THE REALESTATE JAVA APPLICATION...26

TABLE 8 -- MEASURES RESULTS FOR THE REALESTATE JAVA APPLICATION.........................27

TABLE 9 – STEP 1 OUTCOME FOR BUSYBOX...42

TABLE 10 – TEST CASES RESULTS FOR BUSYBOX...46

TABLE 11 – STEP 1 OUTCOME FOR APACHE HTTP..47

TABLE 12 – MATURITY LEVEL (ML) AND BUG RATE (BR) FOR SIX OSS PRODUCTS..........49

TABLE 13 - TEST PLAN FOR MACXIM...64

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 10 of 132

DIFFERENCES WITH RESPECT TO THE PREVIOUS VERSION

Version v3 is an improvement on version v2 of the Working Document 5.4.2. It
contains additional testing coverage data collected using JaBUTi for four extra
OSS projects, namely, HTTPUnit, JasperReports, Log4J, and Velocity. The
results obtained from these extra OSS projects corroborate the observation
contained in v2 in which the test suites provided by OSS project do not
thoroughly assess the structural coverage of the code, indicating that different
ways to assess the testing activity in the realm of Open-source development is
in need. However, there was a notable exception. HTTPUnit test suite obtained
coverage expected for CSS projects.

Additionally, we collected similar control-flow coverage metrics and dynamic
coupling metrics from the OSS RealEstate Java application [NCSU, 2009]. To
collect the control-flow coverage a different tool was utilized and to collect the
dynamic coupling metrics Aspect-oriented Programming (AOP) techniques were
used. The results of the control-flow metrics show that less than 50% of the
Source Code Lines of Code (SLOC) and of the methods were exercised by the
available test suite. This data is in line with the data collected for the previous
OSS projects.

Finally, we present in this new version a case study of the application of T-DOC
in the development of MACXIM—a tool developed in the context of Working
Package A5 for metrics collection from Java programs. Data regarding the
improvements in the testing process by using T-DOC as well the automatically
documentation generated by it are presented.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 11 of 132

INTRODUCTION

1.1. Background

Closed source software (CSS) testing is a well established activity. Unit,
integration, and acceptance testing are expected to be performed to assess its
functional requirements [Pfleeger 2009]. White- and black-box [Beizer 1990]
[Myers 2004] and fault-based techniques [Budd, et al. 1980] have been devised
to support the development and assessment of test suites. Formal standards for
using white-box techniques have been established depending on the CSS area
of application.

The DO-178B standard for certifying safety critical software [RTCA 1992] and
ANSI/IEEE 1008-1997 [IEEE 1987] demand 100% statement and branch
coverage. A less formal recommendation [Cornett 2009] suggests that the
minimum acceptable code coverage level should vary from 70-80% for the
majority of software products. Moreover, Cornett also argues that unit,
integration and system testing levels demand a decreasing coverage level
since, in general, it is easier to achieve a higher coverage of a single unit than
of an entire system.

Non-functional requirements should also be assessed in CSS projects. The
testing activity is also responsible to verify that a software is adherent to its non-
functional requirements. It is equally important to assert that a software system
is able to meet its performance requirements, to cope with workloads close to
its defined limits, and perform acceptably when its limits are surpassed. Thus
CSS is expected to go through stress, load, usability, and configuration testing
before being deployed to the user’s site or released [Pfleeger 2009].

At first sight, one should not expect much difference of CSS and Open-Source
Software (OSS) testing since any software needs to have its functional and non-
functional requirements assessed. In the QualiPSo Project Working Package
5.4 – “Definition of standard test approaches, test suites, and benchmarks of
Open Source Software”, version 1 [Qualipso 2009], testing artefacts developed
in well-regarded OSS projects were investigated. Artefacts such as test plans,
unit, integration, system and acceptance tests, test scripts, and test reports
were searched. Although the majority of OSS projects provide scripts for
automating test case execution using tools such as Ant and Maven, artefacts
denoting a systematic approach for OSS testing were not identified. According
to this investigation, tests in the OSS context seem to be carried out in a rather
ad hoc fashion [Qualipso 2009].

We believe that this is primarily due to at least three mutually related reasons:
(1) some testing techniques that are well agreed on for CSS are not directly
applicable to OSS systems, so a good deal of effort and cost is required for
designing new testing solutions that are created ad hoc for OSS systems; (2)
the planning and monitoring of the testing process of an OSS system hardly
ever follow the guidelines used for CSS systems, so it is necessary to redefine
some methodologies that are at the basis of the testing process; (3) OSS

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 12 of 132

system development hardly ever follows the classic software engineering
paradigms found in textbooks, but it is closer to Agile and XP development
paradigms, so testing activities and testing processes are less structured.

Nevertheless, when OSS use is advocated in place of CSS, a fair question is
whether OSS is as trustworthy as CSS. For an end-user it does not matter
whether a product is open- or closed-source software because she is interested
in dependable products that supply her needs. In this document, we present
three different assessments of the testing activity performed in well-regarded
OSS projects. The first one consisted of evaluating the coverage with respect to
structural testing criteria provided by the test suites developed in OSS projects.
Control- and data-flow based criteria [Rapps and Weyuker 1985] were utilized.
Eight OSS projects were analyzed, namely, HSQLDB, HTTPUnit,
JasperReports, JMeter, JUnit, Log4J and PMD. Data show a modest coverage
for HSQLDB, JasperReports, JMeter, Log4J, and PMD while JUnit and Velocity
coverage data is around 50%. The notable exception is HTTPUnit whose
coverage level is above 70%. Hence, the majority of analyzed OSS projects test
suites need to be improved to reach the 70%-80% level, recommended for
CSS.

The second assessment consisted of evaluating the level of maturity of the OSS
testing process. To do so, a novel maturity model targeted to OSS testing is
presented. The first task of the OSS testing maturity model (OSS-TMM) is to
identify the “Best Testing Process” (BTP) for a particular OSS project. The BTP
is identified by inspecting the project according to a checklist developed to
guide the elicitation of tasks needed to achieve OSS trustworthiness. Then the
“Available Testing Process” (ATP) of the OSS project is obtained by checking
the testing tasks actually executed by the community supporting the project.
Depending on the level of compliance of the ATP with respect to the BTP, a
level of maturity is assigned to the OSS project.

To demonstrate its applicability, OSS-TMM was utilized to analyze in detail two
real-life projects, namely, BusyBox and Apache HTTP. In addition, four more
representative OSS projects were assessed with OSS-TMM in order to
correlate their maturity levels with their bug rates to comprehend whether a
higher maturity of the testing process directly means a higher product quality.
Our observations show that OSS-TMM can be easily applied either to small or
to large OSS projects, but the correlation between the level of maturity and bug
rates was verified in part.

An essential aspect of the testing process maturity is the documentation of the
testing activity performed in an OSS project. The third assessment carried out
was to analyze 32 OSS projects about the availability of testing documentation.
We have observed a remarkable deficiency with regards to testing
documentation. In our analysis, only one product provides a complete
documentation about internal testing activities. The difficulty of providing an up-
to-date and a reasonable documentation of OSS products relates to two main
reasons: first, documenting development activities and technological issues is a
tedious and unrewarding task; second, data and information about the OSS
project (such as source code, project plans, testing requirements, etc.) are
disaggregated and shared via unstructured channels such as unofficial forums

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 13 of 132

and mailing lists.

In this document, we also focus on the problem of documenting testing activities
and we propose a framework (called T-DOC) that supports the automatic
generation of unit, integration, regression testing documentation, the report of
test results, and the aggregation of these data in dedicated central repositories
called "testing tracker systems". The automatic generation is simplified by the
use of built-in testing methodologies that put together the code of methods and
test cases in a single component to avoid the fragmentation of source code and
to simplify the aggregation of the testing data [Beydeda 2005]. Moreover, our
framework provides a three-layers support, starting from (1) the automatic
generation of test cases documentation (in a java-doc like style), (2) the
automatic generation of suggestions about integration and regression testing
activities that should be performed by each developer and for each component
of the project; (3) the automatic generation of reports about the results of the
test suite execution. All the documents and testing data are then collected and
archived in the testing tracker system of the project to favor data discovery and
data sharing.

We apply an initial implementation of the T-DOC framework to the RealEstate
Java [NCSU, 2009] application to show the simple applicability, the real benefits
and the level of automatization provided by our solution. The documentation
generated for this application is presented in Appendix B.

1.2. Objectives

The overall goal of the QualiPSo project is to define and implement
technologies, procedures and policies to leverage the OSS development current
practices to sound and well recognised and established industrial operations.
Activity 5 of the QualiPSo project is mainly concerned with the trustworthiness
of the OSS. The main goal of Activity 5 is the identification, quantification, and
assessment of the quality factors related to the software products as well as to
the artefacts produced during software development that affect trust in OSS
products, with emphasis on functional and non-functional factors. This will lead
to a quantitative body of knowledge and a set of criteria for establishing trust in
OSS.

In this version of this working document, we aim at presenting different ways to
assess the quality of pre-existent test suites and also techniques which can be
used to evolve test suites and testing processes of OSS projects. These
assessments and techniques have implications to different stakeholders.

• From a software company's point of view:

o the assessment of the OSS test suite coverage shows how
thorough the testing of the OSS functional requirements was;

o the application of OSS-TMM simplifies the internal process of
testing OSS products by suggesting a rapid way for identifying a
testing plan that best fits the properties and characteristics of the
OSS product; it simplifies the assessment or certification process

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 14 of 132

of their OSS products by comparing their available testing;

o The use of T-DOC favours the creation of testing documentation
that allows a company to assess the trustworthiness of an OSS.

• From the developer's point of view:

o The assessment of the OSS test suite coverage shows how much
effort are needed to achieve an established level of coverage;

o The application of OSS-TMM simplifies and speeds up testing
activities by guiding developers in selecting testing strategies and
methodologies depending on the properties and characteristics of
the OSS product; it increases the quality and the trustworthiness
perception of the OSS by improving the testing activity.

o T-DOC facilitates the production of testing documentation by
fragmented developers.

• From the end-user's point of view:

o The coverage information is one element which allows the end-
user to make an informed decision on using or not using the OSS;

o The application of OSS-TMM simplifies and speeds up the
selection of an OSS product by evaluating the maturity of the
testing process as an evaluation element about the whole quality
and trustworthiness of the product;

o The T-DOC automatic generated documentation allows the end-
user to assess the testing activity performed in OSS projects.

1.3. Structure

The remainder of this document is divided into the following sections. Section
1.3 presents the empirical evaluation of four OSS projects test suites according
to four structural testing criteria. Section 2.6 describes details of the OSS testing
maturity model (OSS-TMM) and of the experience in applying OMM-TMM on
BusyBox and Apache HTTP, and reports on the maturity level of four additional
OSS projects. Section 3.7 presents the T-DOC framework. Finally, Section 4.4
concludes this work by summarizing the achieved results.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 15 of 132

2. EMPIRICAL EVALUATION OF OSS PROJECTS’ TEST SUITES

In this section, we present the results obtained from the application of structural
testing to assess a set of OSS projects. This initiative is part of our objectives in
the context of the QualiPSo project, in an attempt to identify the current state of
practice of the OSS community while developing test sets for OSS. We utilized
four structural testing criteria—namely, all-Nodes, all-Edges, all-Uses, and all-
Potential-Uses—to assess the thoroughness of functional requirements testing
in OSS projects.

To conduct the coverage analysis of the OSS projects we used JaBUTi – Java
Byte-code Understanding Tool [Vincenzi, et al. 2005] — a tool that statically
analyzes bytecode compiled programs and obtains testing requirements with
respect to the aforementioned testing criteria. In addition, JaBUTi instruments
the analyzed byte-code so that the testing requirements are tracked at run-time
to produce the coverage report with respect to the testing criteria.

We also investigate similar control-flow coverage and dynamic coupling metrics
in the OSS RealEstate Java application. The idea is to verify the data obtained
for similar control-flow coverage metrics and to have a preliminary assessment
of dynamic coupling metrics behavior. The coverage metrics were collected with
a different tool [EclEmma, 2010] and the coupling metrics were obtained using
AOP resources.

We start off with a brief description of the criteria utilized and of JaBUTi, as well
as details of the experiment conducted with this tool. In what follows we discuss
the metrics collected in the OSS RealEstate Java application and their results.

2.1. Structural testing criteria

In structural testing techniques, product implementation aspects are crucial for
choosing test cases. The term “structural” is related to the knowledge of the
internal structure of product implementation. Structural testing criteria are in
general classified as follows:

• Control-flow based testing criteria: only characteristics of the execution
control of a product implementation, such as statements and edges, are
used to determine the necessary testing requirements. The most well-known
criteria are: All-Nodes – requires the execution of all statements of a product
implementation at least once; and All-Edges – requires a test set that makes
each conditional statement assume true and false values at least once.

• Data-flow based testing criteria: information about the data flow in the
program is used to determine testing requirements. Such criteria explore the
interaction between the value assignment of variables and further references
to establish the set of testing requirements. The best known data-flow
testing criterion – All-Uses [Rapps and Weyuker 1985] – requires a test set

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 16 of 132

T to include tests that exercise paths without redefinitions of a variable X
from every definition of X (a value assignment to X) to every subsequent use
of X (a reference to X) (such paths are called def-clear paths with respect to
X). The All-Potential-Uses [Maldonado 1991] criterion is variation of All-Uses
in which the test set T should include tests that exercise def-clear paths from
every definition of X to any point of the program reachable by a def-clear
path with respect to X. The idea is to check potential uses of X.

2.2. JaBUTi

To support the application of the structural testing criteria presented, we have
been working on the development of an Open Source testing tool called JaBUTi
[Vincenzi, et al. 2005].

We have worked on this tool since 2004, improving its functionalities and
extending its application to a variety of software products. Currently, besides
testing Java programs at unit level, the tool may also be applied for unit testing
of Aspect-Oriented programs, Java components, Java micro-edition, and mobile
programs, among others. In addition, the tool can be easily employed to work
with any language which generates bytecode as a result of the compilation
process.

All these variations of JaBUTIi share the core of the tool, which has general
functionalities for structural testing. This core is responsible for: static analysis
of the system under test (SUT), computation of the required elements, program
instrumentation, execution of the instrumented program, and coverage analysis.

A special feature of JaBUTi is to explicitly determine and track at run-time
structural testing requirements associated to exception handling structures.
JaBUTi divides structural requirements in exception independent (ei) and in
exception dependent (ed) requirements. Thus the control- and data-flow based
testing criteria are divided in the following sets: All-Nodes-exception-
independent; All-Edges-exception-independent; All-Uses-exception-
independent; All-Potential-Uses-exception-independent; All-Nodes-exception-
dependent; All-Edges-exception-dependent; All-Uses-exception-dependent; and
All-Potential-Uses-exception-dependent.

The ei set requires testing the control- and data-flows associated to the main
execution path of a program whereas the ed set addresses the testing of flows
associated to the handling of exceptions. By summing up both the ei and the ed
sets one obtains the total coverage with respect to a particular testing criterion.

2.3. Empirical evaluation

Our first task was to make a static evaluation of some open source projects,
namely HSQLDB, JUnit, JMeter, PMD, Weka, ServiceMix, Talend Open Studio,
SpagoBI, Cimero, Jboss Application Server, Mondrian, Pentaho, and Spago.
We have concluded that all of them have, in general, unit test sets (JUnit like)

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 17 of 132

associated with them and, as they are integrated with automated tools (Ant or
Maven), it can be assumed that they are often run. However, despite this testing
culture, the testing techniques and levels applied by the OSS development
community could not be identified with accuracy. Considering the current state
of testing carried out by OSS communities, it can be observed that:

• In general, the only testing criterion applied is functional; other types of
testing like performance and load testing are not available for the
majority of the OSS projects. There is no clear evidence of structural
(control, data-flow) or fault based testing.

• There is no clear distinction between unit, integration, and system
testing. Although there are test suites integrated into the build process
(most projects use Ant or Maven to manage software compilation and
packaging), there are no clearly defined test plans and strategies after
the execution of the test suite–for example, how to proceed when failed
test cases are found (e.g. if more than 10% of the test cases failed, the
developers must be notified and the software package cannot be
released).

A question which regards these test suites is: “Are ad hoc test suites sufficient
to assign trustworthiness to OSS?” To answer this question we use an
approach which comprises structural testing criteria for test set evaluation and
further evolution.

Even though Beizer [Beizer 1990] declares that statement and branch coverage
criteria are the weakest structural testing criteria, he complements that “testing
less than this for new software is unconscionable and should be criminalized”.
Regardless of the level of coverage obtained, the importance of coverage
testing does not lie on identifying which parts of the product were exercised
during test set execution, but on identifying the ones which have not yet been
executed.

Our intention is to perform the evaluation on all the aforementioned OSS
projects. We have current data for eight OSS projects presented in Table 1. The
evaluation is performed using the JaBUTi testing tool, and accounts for all its
supported criteria. The authors may be contacted to provide full data regarding
the experiment.

Table 1 – Description of OSS projects

Name Version Description Project Homepage

HSQLDB 1.9 Alpha 2 Lightweight SQL
Database Engine

http://hsqldb.org

HTTPUnit 1.7R1024 Emulates the relevant
portions of browser
behavior for test
automation

http://httpunit.sourceforge.net/

JasperReports 3.5.3R2881 Open source reporting
engine

http://jasperforge.org/

JMeter 2.3.2 Load test functional http://jakarta.apache.org/jmeter/

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 18 of 132

behavior and measure
performance tool

JUnit 4.9 Unit testing framework http://www.junit.org

Log4J 1.2R791506 Logging of application
behavior

http://logging.apache.org/log4j/

PMD 5.0 Java source code
problem detection

 http://pmd.sourceforge.net/

Velocity 1.6.2R791506 Template engine that
can be used for many
purposes: Web
applications, Source
code generation,
Automatic e-mails and
XML transformation

http://velocity.apache.org/

The OSS projects are implemented in Java and correspond to the release
mentioned in Table 1. Our first evaluation consisted in identifying the size of the
projects and the characteristics in terms of the number of classes and methods
(divided in those which do not employ exception handling constructs and those
which do).

Table 2 shows, for each project, the size in terms of number of bytecode
instructions (Size), lines of source code (LOC, extracted from the bytecode
information), number of classes, number of classes with exception handling
constructions (and its percentage with respect to the total), number of methods,
and number of methods with exception handling constructs (and its percentage
with respect to the total).

The smallest OSS analyzed (JUnit) has 15,502 bytecode instructions originated
from 3369 lines of code, which means 4.6 bytecode instructions per line of
code. In terms of the number of classes, JUnit has 239 classes and 48 out of
239 (20%) have exception handling constructions, at method level. JUnit has
1260 methods and 72 (5.71%) have exception handlers. On average, one may
see that, at method level, the use of exception handlers is almost equivalent –
varying from 4.61% to 11.72% of the total number of methods. This low
percentage is similar to the data obtained by Sinha and Harrold [Sinha and
Harrold 1998] for a different set of programs.

Table 2 – Complexity of OSS projects

OSS Size LOC Number
of
Classes

Number of
Classes with
Exception
Handlers

Number
of
Methods

Methods
with
Exception
Handlers

HSQLDB 277,533 63,592 515 200 (38.83%) 8,318 683 (8.21%)

HTTPUnit 43,229 9,874 368 43 (11.68%) 3,829 121 (3.16)

JasperReports 254312 60,180 1,529 334 (21.84%) 1,4791 682 (4.61)

JMeter 161,385 38,693 773 285 (36.87%) 7,471 625 (8.37%)

JUnit 15,502 3,369 239 48 (20.08%) 1,260 72 (5.71%)

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 19 of 132

Log4J 3,6246 9,006 284 74 (26.06%) 1,919 225 (11.72%)

PMD 133,727 28,483 817 73 (9%) 5,901 374 (8.94%)

Velocity 45,569 10,191 269 80 (29.74%) 2,147 210 (9.78%)

After performing product static analysis, we started the dynamic analysis via
JaBUTi. In JaBUTi’s case, the dynamic analysis demands the instrumentation
of each method of the SUT. The instrumentation is performed at bytecode level
by using the JaBUTi instrumenter and, after that, we executed the available test
set against this instrumented version, so that dynamic trace information could
be collected and confronted with the structural testing criteria implemented by
JaBUTi. , , and show the collected data.

 and show the coverage after the execution of all available test sets developed
by the OSS community for each program, considering the exception-
independent and the exception-dependent testing criteria, respectively. For
instance, the HTTPUnit test set was the one which determined the highest
coverage with respect to all testing criteria. For All-Nodes-ei, the test set
covered 6,889 out of 8536 required elements, 80.71% of coverage. As for the
other testing criteria with higher complexity, the coverage percentages of the
required elements were 78.53%, 76.70%, and 74.43%, respectively, for all-
Edges-ei, All-Uses-ei, and All-Potential-Uses-ei. These coverage levels are
compatible to the ones expected for CSS projects.

JUnit and Velocity presented structural testing coverage varying from 50% to
65% for all-Nodes-ei criterion, which is below the expected level for CSS
projects, but can be considered a better result in comparison to HSQLDB,
JasperReports, Log4J, and PMD. These latter projects have a coverage level
below 40%, allowing us to infer that many codes are only executed by the users
and that their test cases are probably not integrated in the official test set. In
case of HSQLDB, the percentage of coverage of the All-Nodes-ei criterion is
19.73%, which means that more than 80% of source code is not executed by
any official test case in the test set.

Table 3 – Requirement coverage: exception-independent criteria

Criterion All-Nodes-ei All-Edges-ei All-Uses-ei All-Pot-Uses-ei

OSS Coverage (%) Coverage (%) Coverage (%) Coverage (%)

HSQLDB 8,029/40,703
(19.73%)

 7,476/45,098
(16.58%)

 19,720/126,246
(15.62%)

 67,847/458,843
(14.79%)

HTTPUnit 6,889/8,536
(80.71%)

5,118/6,517
(78.53%)

1,0581/13,796
(76.70%)

23,156/31,110
(74.43)%

JasperReport
s

11,820/38,901
(30.38%)

9,619/37,469
(25.67%)

20,601/83,311
(24.73%)

74,118/293,119
(25.29%)

JMeter 7,845/20,462
(38.34%)

 5,461/19,317
(28.27%)

 10,935/41,180
(26.55%)

 33,615/130,547
(25.75%)

JUnit 1,290/2,614
(49.35%)

 844/1,873
(45.06%)

 1,384/3,376
(41.00%)

3,373/7,936
(42.50%)

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 20 of 132

Log4J 2,043/5,602
(36.47%)

1,849/5,445
(33.96%)

4,071/10,759
(37.84%)

9,898/27,665
(35.78%)

PMD 7,938/21,184
(37.47%)

 6,858/23,249
(29.50%)

 13,331/57,552
(23.16%)

 38,404/252,261
(15.22%)

Velocity 4,764/7,361
(64.72%)

4,587/7,929
(57.85%)

9,167/15,415
(59.47%)

25,555/46,499
(54.96%)

 shows the obtained coverage with respect to the exception-dependent criteria,
i.e., those criteria which demand an exception to be raised for covering the
testing requirements. Considering the most basic structural testing criterion (All-
Nodes-ed), the highest coverage was determined by the test set of the Velocity
project, which executed 226 out of 1,006 testing requirements (22.47%). This is
a low coverage and additional test sets should be developed at least to confirm
that most of the exception handling construction in the program could be
executed at least once.

Table 4 – Requirement coverage: exception-dependent criteria

Criterion All-Nodes-ed All-Edges-
ed

 All-Uses-ed All-Pot-Uses-
ed

OSS Coverage
(%)

 Coverage
(%)

 Coverage
(%)

 Coverage (%)

HSQLDB 141/1,942
(7.26%)

 49/6,513
(0.75%)

 256/2,750
(9.31%)

 3,591/38,032
(9.44%)

HTTPUnit 37/221
(16.74%)

24/397
(6.05%)

34/161
(21.12%)

185/1,022
(18.10%)

JasperReports 5/1,493
(0.33%)

3/3,280
(0.09%)

3/1,294
(0.23%)

24/12,619
(0.19%)

JMeter 51/1,541
(3.31%)

 39/4,863
(0.80%)

 52/2,093
(2.48%)

 276/15,301
(1.80%)

JUnit 12/156
(7.69%)

 9/184
(4.89%)

 13/183
(7.10%)

 29/632
(4.59%)

Log4J 33/581
(5.68%)

10/1,070
(0.93%)

48/615
(7.80%)

194/3,954
(4.91%)

PMD 325/2,039
(15.94%)

 121/3,814
(3.17%)

 388/3,590
(10.81%)

 1,689/20,285
(8.33%)

Velocity 226/1,006
(22.47%)

108/2,399
(4.50%)

356/1,769
(20.12%)

1,907/10,939
(17.43%)

In we present more detailed information about the total number of methods with
exception handlers, the total number of testing requirements generated by the
All-Nodes-ed criterion, the average number of requirements per method, the
number of methods which do not have exception handler construction executed
by any test case, and the total coverage obtained for such a criterion. As
shows, there is a high percentage of methods with zero coverage against any
exception-dependent criterion. Five out of eight programs have no test case to

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 21 of 132

execute their exception handling code for 90% or more of their methods. Two
programs do not test the exception handling code for 80% or more; and only
one program leaves untested 72% of their methods with exceptions. The best
program is Velocity, for which the current test set is able to exercise 58 (28%)
out of 210 methods with exception handlers, but still 72% of the methods are
not executed by any test case.

Another point that might be inferred from is that the exception handlers have
normally few nodes on average, i.e. they are not so complex in terms of logical
structure. By analyzing such products, it is possible to observe that many
exception handlers have empty catch blocks, just avoiding the exception
propagation but with no corrective action associated with it. The most complex
exception handlers are found in Velocity, which has on average 11.42
requirements per method, followed by PMD with 5.45 requirements per method,
considering the All-Nodes-ed criterion.

These numbers show that all of the projects analyzed reveal a low level of code
coverage for codes related to exception handling structures. This is disturbing
because it reveals the lack of concern from OSS communities on constructing a
reference test set for their products. Although it is possible to have a high
quality software product using other activities for quality assurance, like formal
review and inspection, testing is important to show the behavior of the product
during its execution and a lower level of code coverage means that parts of the
product are not being executed by the test suite.

Table 5 – Exception handlers data at method level: All-Nodes-ed criterion

OSS Number of
methods

Number of
requirements

Average Number of
methods
with no
coverage

Total coverage
(%)

HSQLDB 683 1,942 2.84 669
(97.95%)

7.26

HTTPUnit
121 221

1.83 101
(83.47%)

16.74

JasperReports 682 1493 2.19 679
(99.56%)

0.33

JMeter 625 1,541 2.47 595
(95.20)%

3.31

JUnit 63 156 2.48 57
(90.48%)

7.69

Log4J 210 1006 4.79 215
(95.56%)

5.68

PMD 374 2,039 5.45 299
(79.95%)

15.94

Velocity 210 2399 11.42 152
(72.38%)

22.27

For exception handling criteria the situation is even worse. Although the
complexity of exception handlers is not high – as shown by the number of

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 22 of 132

testing requirements – the coverage of such testing requirements is very low.
Many of the methods with this kind of code are not even executed once.

In addition, there is no indication of test cases specifically designed to address
exception handling. Even if the adopted policy is not to execute exception
handlers because they may be difficult to reach, the approach utilized in this
assessment reveals which requirements could be neglected and which should
be covered. An interesting approach for OSS communities and software
developers in general would be the release of two test sets: one related to
mainstream or happy path code and one to cover exception handling code.

 presents the summary of coverage regarding ei and ed sets. One should
consider the data of this table when accessing coverage data regarding All-
Nodes, All-Edges, and All-Uses, and All-Potential-Uses. The data shows a
modest coverage for HSQLDB, JasperReports, JMeter, Log4J, and PMD is
modest (below 40%) while JUnit and Velocity coverage data is around 50%. In
comparison to the recommended code coverage (70-80%), these OSS projects
needs to improve their test suites to achieve the CSS recommended coverage
level. The notable exception is HTTPUnit whose coverage level is right in the
recommended level, between 70-80%.

Table 6 – Requirement coverage: exception-independent and exception-dependent
criteria

Criterion All-Nodes All-Edges All-Uses All-Pot-Uses

OSS Coverage (%) Coverage (%) Coverage (%) Coverage (%)

HSQLDB 8,170/42,645
(19.16%)

 7,525/51,611
(14.58%)

 19,976/128,996
(15.49%)

 71,438/496,875
(14.38%)

HTTPUnit 6,926/8,757
(79.09%)

5,142/6,914
(74.37%)

10,615/13,957
(76.06%)

23,341/32,132
(72.64%)

JasperReports 11,825/40,394
(29.27%)

9,622/40,749
(23.61%)

20,604/84,605
(24.35%)

74,142/305,738
(24.25%)

JMeter 7,896/22,003
(35.89%)

 5,500/24,180
(22.75%)

 10,987/43273
(25.39%)

 33,891/145,848
(23.24%)

JUnit 1,322/2,780
(47.55%)

 865/2,076
(41.67%)

 1,424/3,583
(39.74%)

3,474/8,575
(40.51%)

Log4J 2,076/6,183
(33.58%)

18,59/6,515
(28.53%)

4,119/11,374
(36.21%)

10,092/31,619
(31.92%)

PMD 8,263/23,223
(35.58%)

 6,979/27,063
(25.79%)

 13,719/61,142
(22.44%)

 40,093/272,546
(14.71%)

Velocity 4,990/8,367
(59.64%)

4,695/10,328
(45.46%)

9,523/17,184
(55.42%)

27,462/57,438
(47.81%)

2.4. Dynamic measures for size and coupling

In this section, different coverage measures are used to compute dynamic
measures for size and coupling. The dynamic size measures are similar to the
control-flow testing criterion all-Nodes (blocks, instructions, and SLOC

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 23 of 132

measures). Other size metrics are related to coverage of methods and types in
Java programs. We are interested in collecting dynamic data to show the gap
between dynamic and static measures (e.g., total number of blocks,
instructions, SLOC, methods, types).

Moreover, we aim at preliminary investigating whether AOP and coverage
criteria are powerful enough to collect dynamic measures of size and coupling.

Coverage Criteria for Dynamic Size Measures

Blocks: The number of blocks (i.e., the sequence of bytecode instructions
without any jumps or jump targets) exercised by the test suite. A block is
considered as exercised when its last instruction has been executed. A module
in this case is statically modelled as a block control-flow, in which bytecode
blocks are represented by the nodes of the graph (i.e., the elements of the
system) and control-flow transfers between blocks are represented by the arcs
of the graph (i.e., the relationships of the system).

Instructions: The number of bytecode instructions exercised. A module in this
case is statically modelled as a control-flow graph, in which bytecode
instructions are represented by the nodes of the graph and control-flow
transfers between bytecode instructions are represented by the arcs of the
graph.

SLOC: The number of Java source lines of code exercised. A module in this
case is statically modelled as a control-flow graph, in which source lines of code
are represented by the nodes of the graph and control-flow transfers between
source lines of code are represented by the arcs of the graph.

Methods: The number of distinct methods exercised. A method is considered
as exercised if at least one statement of the method has been executed. A
module is statically modelled as a sheer sequence of methods declared in a
class, so methods are represented by the nodes of the graph. The node
representing a method is linked to the next node (which represents the next
method in the sequence) by an arc.

Types: The number of distinct Java type exercised. A Java type is considered
as exercised if it has been loaded and initialized.

Coverage Criteria for Dynamic Coupling Measures

We collected three dynamic coupling measures, defined in [Arisholm et al.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 24 of 132

2004].

Dynamic messages: The count, within a runtime session, of the total number
of distinct messages sent from one object of a class to other objects. Two
messages are not distinct if their source and target classes, the method invoked
in the target class, and the statement from which it is invoked in the source
class are the same. Here, one may model a class as a module and each
method as an element. Thus, a method invocation is represented as a
relationship between an element in one class and an element in another class.

Distinct method invocations: The count, within a runtime session, of the total
number of distinct methods invoked by each method in each object.

Distinct classes: The count the distinct number of classes that a method uses
within a runtime session.

Application example of dynamic measures

We present the results of a case study conducted to provide a first empirical
validation of the dynamic measures discussed above. First, we present the
methodology we follow, the environmental setup and the objectives of this
experimentation. Second, we provide and we discuss quantitative results about
size and coupling dynamic metrics.

Objectives and Methodology

We selected an open-source Java project called RealEstate to evaluate
dynamic size and coupling aspects. RealEstate is a software application
created at North Carolina State University that reproduces the Monopoly game
[NCSU, 2009]. RealEstate is released within a test suite that contains a set of
unit and acceptance test cases. The considered RealEstate release consists of
2723 source lines of code (SLOC) in 4 source packages, 79 classes and 569
methods (after removing classes related to test cases and methods used to
profile the source code of the application).

We focused on collecting different types of data referring to the dynamic size
and the coupling of the application. As for collecting dynamic size measures, we
used the EclEmma Eclipse plugin [EclEmma, 2010]. EclEmma is a free Java
code coverage tool for Eclipse that does not require modifying the RealEstate
application. We used the test cases provided with the RealEstate source code
to exercise the system, and by means of EclEmma we are able to compute at
run-time the measures we discussed above.

Following our previous experience and results, as for collecting dynamic
coupling measures, we profiled the RealEstate application by means of Aspect-

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 25 of 132

Oriented Programming (AOP) and we exercised the system by means of the
RealEstate test suite. We used the AJDT Eclipse plugin (based on the AspectJ
runtime library) [AJDT, 2010] to define an aspect (i.e., a stand-alone module
that contains cross-cutting concerns), a pointcut (i.e., a set of join points that are
able to capture well-defined moments in the execution of a program, like
method call, object instantiation, or variable access), and an advice (i.e., the
code to run before, after, or around the specified join point) able to trace all the
calling classes and methods, the called classes and methods, and the
statements from which calls originate. The pseudo code of the most relevant
part of the defined aspect looks like as follows:

public aspect DynamicCouplingAspect {
 pointcut executionTree():
 within(TestClass_a) ||

 within(TestClass_n) &&
 call (* *(..));
 Object around(): executionTree() {
 print(thisJointPointStaticPart.getSignature);
 print(thisJointPointStaticPart.getDeclaringType);

 }

}

Experimental Results

This subsection summarizes the main results about dynamic size and coupling
measures. shows the results of the measures related to size aspects discussed
in the previous subsection. Column <Target Element> specifies the code
element that is monitored by EclEmma when executing the RealEstate test
suite; Column <Static Measure> indicates the total number of occurrences we
statically detected into the system for the target element; Column <Dynamic
Measure> reports the total number of occurrences we dynamically detected into
the system for the target element when executing the test suite; Column
<Ratio> specifies the percentage of exercised elements at run-time over the
total number of static elements.

Table 7 — Dynamic Size Measures Results for the RealEstate Java application

Target
Element

Static Measure Dynamic
Measure

Ratio

Blocks 901 387 43.0%
Instructions 10411 4775 45.9%
SLOC 2723 1316 48.3%

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 26 of 132

Methods 569 247 43.4%
Types 111 57 51.4%

As shown in , it is clear how dynamic measures are different from static
measures. Of course, these results are strongly related to the quality of the test
suite that can or cannot stress specific aspects of the system. shows the
results of the three coupling measures previously discussed. We randomly
selected different sets of test cases and we executed the system with these
different scenarios to understand whether a linear reduction on the number of
test cases implies a linear reduction of the dynamic coupling.

In Figure 1, Figure 2, Figure 3, and Figure 4 we show the trend of the collected
data about the three dynamic coupling measures across the variation in the
number of test cases that stimulate the system. As shown in these figures, the
coupling linearly grows with the number of the inputs (i.e., the number of the
test cases) that stimulate the system.

This example confirmed that AOP is a valid approach for detecting dynamic
measures of a software system: it requires a limited effort for defining aspects
and pointcuts able to trace data about dynamic coupling measures, it does not
impact the system performance, and it favours the separation of concerns (i.e.,
the source code of the system is separated from the source code of the
aspects).

Of course, additional experiments are needed to understand whether AOP is
able to successfully monitor more complex dynamic measures than the one
presented in this work. Additionally, the linear correlation between dynamic
coupling and number of test cases observed in RealEstate is verified in other
OSS projects.

Table 8 -- Measures results for the RealEstate Java application

Execution
Scenario

#of Dynamic
Messages

#of Distinct
Methods

#of Distinct
Classes

Scenario 1 1324 135 48
Scenario 2 557 99 30
Scenario 3 614 62 26
Scenario 4 674 87 27
Scenario 5 288 56 16
Scenario 6 217 53 21
Scenario 7 162 31 10
Scenario 8 71 27 8

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 27 of 132

Figure 1 -- Number of intercepted dynamic messages x number of test cases.

Figure 2 -- Number of intercepted dynamic calls to distinct classes x number of test
cases.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 28 of 132

Figure 3 -- Number of intercepted calls to distinct methods x number of test cases.

Figure 4 -- Number of intercepted dynamic messages x number of test cases.

2.5. Related work

Code coverage has been investigated as a measure to assess the quality of a
test set. Experiments to assess the effectiveness of test sets of different
coverage levels have been conducted [Frankl and Weiss 1993] (Frankl and

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 29 of 132

Iakounenko 1998) [Hutchins, et al. 1994]. By effectiveness of a test set one
should understand its likelihood in revealing errors of a program. In general
these experiments utilize a set of programs that have a pool of test cases so
that it is possible to develop a great number of different test sets with identical
level of code coverage. The idea is to obtain a number of similar test sets in
such a way that relevant statistical analysis can be produced.

[Ho, Elbaum and Rothermel 2005] developed an infrastructure to support the
design and conduction of experiments to evaluate testing and debugging
techniques. The authors made available several programs, with their respective
test pools and erroneous versions, to facilitated experiments to assess the
effectiveness and efficiency of testing and debugging techniques. The majority
of programs are OSS and one of them is JMeter.

The data presented in this paper and in the previous works differs on purpose.
Our data aims at assessing the thoroughness of the testing process that
generated the OSS test suites. On the other hand, the previous works’ goal is to
assess the effectiveness of the structural testing techniques.

2.6. Final remarks

We presented experimental data collected by JaBUTi in a set of eight OSS
projects. The experiment intended to assess the adequacy of pre-existent test
sets against a set of structural testing criteria.

Our observations reveal that in general the coverage with respect to structural
testing criteria needs improvement. When evaluating the quality of the pre-
existent test sets against the exception-independent criteria, we have found a
single project with coverage at the 70%-80% level for the All-Nodes-ei criterion.
We have found two projects with coverage in the 50%-65% range and four
projects with coverage below 40%, which is generally regarded as a low level of
coverage and an indicator that the test set should be improved

The coverage regarding exception-dependent criteria is more modest. For
instance, the maximum coverage of the All-Nodes-ed criterion was below
22.5%, which shows that, in general, there is no concern for the development of
test cases to exercise exceptional conditions in the project. Moreover, many
exception constructions have empty catch blocks, which reveal that the
exception handler, though present, is used only to avoid the spread of the
exception, not to recover from an erroneous condition.

The overall data, considering exception-independent and exception-dependent
coverage, reveals the need of improvement of code assessment in the OSS
projects. A single project obtained coverage above 70% for all-Nodes and all-
Edges. Both criteria are considered basic structural testing with a minimal
coverage of 70% recommended for CSS.

Similar control-flow coverage metrics were collected for a small program with a
different tool and using AOP resources. The results are along the same lines:
the number of blocks, instructions, SLOC, methods, classes, and types

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 30 of 132

exercised varied from 43% to 51.4%. Dynamic coupling metrics were
successfully collected using AOP resources. The dynamic coupling metrics
grew linearly as the number of test cases augmented. This observation
deserves further examination considering other OSS projects. Moreover, AOP
greatly facilitated the collection of such metrics; however, AOP scalability
should still be verified for bigger OSS projects.

Concerning the testing criteria coverage, these are rather unexpected results
since the OSS projects investigated are well-regarded and commonly used in
many industrial settings. One possible hypothesis for this behaviour is that
many tests are not added in the test suites. A developer may fix or add a new
feature, creates a test to verify it, but does not add it to the test suite.
Furthermore, much of the testing being carried out in the OSS context is
expected to be performed by final users. They might explore the code of the
OSS product but their informal tests are not registered in test suites.

This characteristic of the OSS development highlights some shortcomings of an
OSS product when compared to a CSS product. Poor test suites undermines
future code refactoring and regression testing, implying difficulties for
performing maintenance of the code. Moreover, an industrial user will hardly
change a CSS product by an OSS product without being able to assess the
OSS product trustworthiness in comparison to a CSS counterpart. In this sense
ways to assess the testing process of OSS products are needed. In the next
section we introduce the OSS-TMM – Open-source Software Testing Maturity
Model – whose objective is to assess the maturity of testing process which
takes place in the OSS realm.

Although a 100% of code coverage is not a guarantee of a high quality software
product, higher the coverage, higher the confidence the product behaviour is
correct or, at least, the executed code is necessary to provide the product
functionality. Besides structural testing, other quality assurance activities, such
as inspection and formal review, may also be used to maximize the defect
detection rate earlier as possible.

The coverage metrics presented in this section may be used in MOSST – Model
of Open Source Software Trustworthiness – which aims at assessing the
trustworthiness of OSS projects.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 31 of 132

3. OSS-TMM – OPEN SOURCE SOFTWARE TESTING MATURITY MODEL

In this section, we define a Maturity Model for the testing process of OSS
systems (OSS-TMM: Open Source Software Testing Maturity Model). We
introduced the idea of OSS-TMM in [Tosi, Taibi and Morasca 2009]. OSS-TMM
aims at improving the quality and the trustworthiness perception of OSS
products by supporting the planning, monitoring, and execution of testing
activities. Unlike existing certification models [Burnstein, Suwanassart and
Carlson 1996], [Herbsleb, et al. 1997], [Emam 1997] which have been defined
with CSS characteristics in mind, our model takes into account the specific
issues that characterize and distinguish OSS systems from CSS systems, how
these differences influence the testing process, and the relationships between
these issues and the testing techniques applicable to OSS systems.

Specifically, OSS-TMM provides guidelines for improving an OSS testing
process by recommending the checks that need to be done to retrieve as many
failures as possible by means of specific testing activities and test suites. OSS-
TMM is based on a list of common testing issues that characterize OSS
products, which we identified as the result of experience we acquired by both
evaluating 32 well-known OSS projects (such as the Linux OS, the web server
Apache, and the GCC compiler) and analyzing the literature that focuses on
OSS products. To provide evidence for its usefulness, we have applied our
maturity model to the BusyBox and the Apache HTTP OSS products, to show
how our model can actually improve testing process quality in real-life projects.
Additionally, we tried to answer the question: Does a high maturity of the testing
process directly mean a high quality of the OSS product, and does a low
maturity level directly mean a low quality of the product? To answer this
question, we correlated the maturity level of a representative set of OSS
products with their bug rate.

In what follows, we discuss the motivations, goals and details of our approach,
describe our experience with BusyBox, Apache HTTP and TPTP, and report on
the maturity level of four additional OSS projects.

3.1. Towards a maturity model for Open Source Software

Our experience in the context of OSS projects suggests that OSS communities
do not usually view software testing as a primary software development activity.
Also, most OSS projects do not integrate testing activities into their
development process. In a survey, we asked 151 OSS users (developers,
contributors, final users, etc.) and stakeholders to rate the importance of a
number of factors that they take into account during the adoption of OSS
components and products. The complete survey can be found in [QualiPSo1
2009]. Unexpectedly, interviewees on average answered that the factor
"existence of benchmarks / test suites that witness for the quality of OSS" takes

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 32 of 132

a low importance. This may be a result of the fact that benchmarks and
complete test suites are hardly ever available for OSS, more than the fact that
benchmarks and test suites might not be important. So, OSS end users,
integrators, stakeholders, etc. do not use benchmarks and test suites simply
because they often do not exist. We also analyzed the web portal of 32 well-
known OSS products and we discovered that in the web-portals only 6% of the
products show the availability of test suites; 19% of the products provides
performance benchmarks; 3% show the usage testing framework to support
testing activities; 0% provides results about test suites executions; 41%
provides internal (or external) reports about benchmarks executions. The
complete list of projects can be found in [QualiPSo2 2009]. These somewhat
discouraging data are in contrast with the trend followed by CSS products
where software testing is considered as one of the most important activities of
the development process.

The final goal of our work is to help OSS developers test their products, by
defining a Maturity Model that can be used by companies, developers, and final
users to assess and improve the testing process of the OSS product under
consideration. To support this goal, we identify:

 A set of maturity levels (MLs) that reflect the evolution of the OSS testing
process.

 The set of issues that characterize OSS systems and that point out the
differences between OSS and CSS products, and also a set of guidelines
that will be used to identify the testing techniques that best fit the
characteristics of OSS products. These two sets are presented in
Appendix A as a checklist of issues that can be used by companies and
private developers/contributors to identify the peculiarities of their OSS
products, to discover the level of compliance of the target OSS product
with the typical OSS characteristics, and to define the best testing
process for the target product.

 A step-by-step methodology that companies, private
developers/contributors, and final users can follow to assess the maturity
level of the testing process available for the target OSS product.

3.2. Maturity level

In compliance with existing certification and maturity models, we identified four
maturity levels that reflect the evolution of the testing process from one that is
unstructured and undefined (Level 1) to one that is well planned, monitored and
optimized (Level 4). Refer to Section 3.6Errore: sorgente del riferimento non
trovata for more details about other certification and maturity models.

Unlike in CMM and TMM [Herbsleb, et al. 1997], [Burnstein, Suwanassart and
Carlson 1996] our levels are not defined and structured as sets of
predetermined maturity characteristics and goals, but they depend on the
specific characteristics of the product under evaluation. Burnstein et al.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 33 of 132

[Burnstein, Suwanassart and Carlson 1996] define five maturity levels of a
testing process starting from Level 1 in which the testing process is initial and
not distinguishable from debugging, to Level 5 in which the testing process has
a set of defined testing policies, a test life cycle, a test planning process, a test
group, a test process improvement group, a set of test-related metrics,
appropriate tools and equipments, controlling and tracking mechanisms, and
finally a product quality control. Such a model is unsuitable in the OSS scenario
where the testing process strongly depends on the inherent issues and
characteristics of the target product. In our experiments, we quickly applied
Burnstein's Testing Maturity Model (TMM) to the 32 OSS products of our
experiments, and we discovered that none of these products obtains a maturity
level greater than 3, and the vast majority of products fall into the first and
second level.

Hence, we identified four maturity levels with less stringent requirements than
TMM, which are dynamically computed for each product by applying our OSS-
TMM. Next, we describe these four maturity levels. At any rate, the range of
values reported in the following list can be refined over time to normalize the
values based on the results obtained from a more extensive evaluation of our
approach. In the formulas in the following list, BTP and ATP represent the sets
of activities of the Best and Available Testing Processes, respectively. By "best
testing process," we mean the most mature process it is theoretically possible to
achieve with reference to the inherent characteristics of the product. A testing
process is mature if it has been structured for completeness (i.e., appropriate
testing activities are planned to detect each important class of faults that
depends on the application domain, the organizations and the technologies
employed), timeliness (i.e. faults are detected as soon as possible), and cost
effectiveness (i.e., testing activities are chosen depending on their cost as well
as their effectiveness). Of course, the definition of the BTP is not fully objective
due to the huge number of testing techniques and practices that are potentially
useful. Our intent is to suggest a set of representative testing activities and
technologies, and not a rigid model, due to the rapid evolution of the field,
especially in the OSS world.

 Level 1: The activities performed by the ATP cover the activities
suggested by BTP with a degree that is lower than 25%. As a formula: |
ATP ∩ BTP| < 25% |BTP|;

 Level 2: The activities performed by the ATP cover the activities
suggested by the BTP with a degree that is in the range 25%-50. As a
formula: 25% |BTP| <= |ATP ∩ BTP| < 50% |BTP|;

 Level 3: The activities performed by the ATP cover the activities
suggested by the BTP with a degree that is in the range 50%-75%. As a
formula: 50% |BTP| <= |ATP ∩ BTP| < 75% |BTP|;

 Level 4: The activities performed by the ATP cover the activities
suggested by the BTP with a degree that is in the range 75%-100%. As
a formula: 75% |BTP| < |ATP ∩ BTP| <= 100% |BTP|.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 34 of 132

3.3. OSS issues

The inherent issues (and sub-issues) that characterize OSS products are
related to the following five macro categories:

• (I1) visibility of an OSS product (i.e., the availability of the source code
and its internal structure)

• (I2) system analysis and product design activities

• (I3) development process

• (I4) system growth and community creativity

• (I5) documentation and dissemination aspects.

In this section, we informally discuss each macro category, the sub-issues that
belong to each category, how OSS products differ from CSS systems, and the
connections between issues and testing methodologies. In Appendix A we
schematize these categories.

3.3.1. I1 - Visibility

Contrary to CSS, OSS is freely distributed and the source code is open and
transparent to both developers and end-users under specific license policies.
The full visibility of the internal workings of the system (i.e., the logic and the
structure of the code) provides developers and users with the opportunity to
exercise and test the complete behaviour of the system. Visibility facilitates the
applicability of all the software testing techniques that fall into the "white box"
testing category [Pezzè and Young 2007] and that address: (1) unit testing,
used to detect defects in each component before it is released and integrated
with other code; (2) integration testing, used to check for defects during the
integration process of components; (3) regression testing, used to selectively
retest the system to check whether a modification of the code has caused
unintended effects. Path testing, data flow testing, and code inspection [Pezzè
and Young 2007] are examples of verification techniques that may address the
requirements imposed by OSS systems.

Visibility also implies the possibility to have log files or execution traces
available to the OSS community. This can suggest the possibility of using
techniques of dynamic analysis to analyze log files, compute behavioural
properties that are true for the collected data, and then check those properties
against future executions to detect misbehaviours [Ernst, et al. 2001].

Another important aspect to take into account when testing OSS systems is
related to security. It is obvious that the availability of the source code
potentially increases the vulnerability of the system, thus making it important to
carry out a serious campaign of security testing at each layer if necessary.
Detecting software security vulnerabilities is not a trivial task and requires ad
hoc verification and testing techniques able to discover security issues (e.g.,

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 35 of 132

secure code review, symbolic execution, risk-based security tests, penetration
tests, dependencies tests [Howard 2006], [Dannenberg and Ernst 1982], [Arkin,
Stender and McGraw 2005]). In the context of OSS products, the scripts' source
code of the test cases is also available, thus implying the possibility that
malicious developers may manipulate the script.

3.3.2. I2 - System Analysis and Product Design Activities

System analysis and product design are usually not well planned activities in
OSS. This is due to the short-term and non-commercial vision that
characterizes some OSS projects, many of which were started to solve a user's
particular problem without a long-term vision and a real perception of the
innovation and evolution degree that the project could have in the future (this is
the case of Linux, Perl, and the World Wide Web). The evolution of each
release of OSS projects only depends on the unpredictable spread and diffusion
that the project may have, and it is directly related to the attraction that the
project produces in the community over time, thus making it impossible to pre-
plan the design of each release of the system.

Moreover, OSS is often characterized by an unstructured environment, where
tasks are not assigned, because OSS developers are volunteers who mostly do
what they want to do. In CSS projects, team members have assigned work; in
OSS projects, team members choose work. Due to this freedom, activities that
are viewed as nuisances such as project plans definition, system design
evaluation, and requirements analysis may not be adequately performed in the
OSS community.

As a consequence, system requirements are not always defined in advance by
skilled analysts, but are discussed over time by the developers. Risks are not
formally assessed in advance, nor are they monitored or formally managed
during the project life-cycle. Whenever system analysis and system models are
unavailable, all the testing techniques based on system specifications (such as
model-based testing [Pretschner, et al. 2005], category partition [Ostrand and
Balcer 1988], etc.) are not well applicable to the OSS product, and a pre-
planned testing plan is infeasible.

While goal, risks, and models are not always provided, performance
requirements and hardware/software requirements are often highlighted. This
encourages the applicability of testing techniques (such as load testing, stress
testing, and endurance testing [Pezzè and Young 2007]) that test the
performance of the whole system and combinatorial testing techniques to check
all the possible pair wise combinations of hardware and software platforms
supported by the product. If external or third-party libraries and plugins are
required, versioning compatibility checks should be performed to avoid
integration problems. Whenever coding standards and coding conventions are
required, style check and inspection techniques should be applied to check the
compliance of the released code with the required conventions. Moreover, when
the product requires a graphical user interface (GUI), usability tests should be

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 36 of 132

planned, and “capture & replay” tools (such as Jacareto
[http://jacareto.sourceforge.net]) could be used to automate the re-run of
specific program executions.

3.3.3. I3 - Development Process

OSS is developed in a collaborative and distributed way [Raymond 2001]. OSS
systems are developed in a large-scale cooperative context, where different
teams, private users, a passionate core of developers, and virtual communities
create the “unstructured company'' (E. S. Raymond called it “Bazaar'' [Raymond
2001]) that will contribute to the project. Internet is the scaffolding and the
desktop for these virtual software development organizations, and developers
are coordinated by simple license policies without mechanisms of hierarchy and
supervision as stringent as in CSS development. As a consequence, OSS
developers hardly ever follow a development methodology that is as well
defined as that followed by CSS developers.

In this scenario, classical development processes, such as the Waterfall model
or the Spiral model, are often inapplicable. The development process of OSS
products often resembles Agile or XP models in which a cycle of test
design/execution is wrapped around each small-grain incremental development
step. This makes it necessary to focus on testing techniques that are iterated
during the whole development process of the OSS product. Continuous [Saff
and Ernst 2004] and evolutionary testing [Santelices, et al. 2008] are new
techniques that are available to this end.

Focusing on testing aspects, the issue I3 may favour a more rapid discovery
and fix of defects than in CSS projects [Mockus, Fielding and Herbsleb 2000]
since developers and end-users are unaware testers of the system [Raymond
2001]. When developers provide a new system feature, they test the coded
functionality and also the entire system in their own sandbox environment, thus
implicitly providing a set of test cases that are unique (because they depend on
the characteristics of the sandbox environment). This is also true for end-users
that install and use the latest version of the system, providing important usability
feedback to the community. Moreover, in some OSS projects, patches and new
functionalities are made available as soon as they are developed. In CSS
systems, they are bundled into new scheduled releases thus slowing down the
process of “customer testing.'' This suggests the idea of collaborative testing
where developers and end-users should share testing knowledge with each
other to allow the applicability of fault-based testing [Morell 1990].

However, unstructured teams have more difficulties in planning the testing
activities, and more risk to introduce errors every time they release a program
change because they do not know the impact that your change can have on the
system. This requires the introduction of a strong regression testing activity to
re-run previously executed tests and check whether previously fixed faults have
re-emerged due to program changes.

Moreover, most of the developers are not skilled testers. Thus, they resort to

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 37 of 132

adopting an integrated development environment (IDE) that provides
comprehensive facilities to computer programmers for software development; to
exploiting all the testing facilities provided by the IDE (e.g., in ECLIPSE many
plugins for testing are provided); to introducing into the development process
automated testing platforms and frameworks (such as TPTP: the Eclipse Test &
Performance Tools Platform Project [Eclipse 2009]) that help plan the testing
process, automatically derive oracles and stubs (to reduce the effort in writing
test cases), document the executed test cases (to simplify the process of
reusing test cases), report test results in a well agreed format (to facilitate the
interpretation of the results), and monitor the testing process.

3.3.4. I4 - System Growth and Community Creativity

OSS is characterized by a faster system growth [Mockus, Fielding and Herbsleb
2000] and more creativity than CSS [O'Reilly n.d.], which may lead to a more
rapid satisfaction of customer needs. This is primarily due to the unstructured
and informal organization of the communities. It is often believed that structure
and rules “inhibit innovative thinkers and drive them to the fringes [O'Reilly
n.d.],'' while informality and freedom boost action and creativity. This implicitly
requires the definition of architectures that are inherently modular and scalable
to guarantee the extensibility of a system and its interoperability across different
hardware and software platforms.

Focusing on testing aspects, I4 highlights the importance of regression testing
activities to avoid bugs introduced by a lavish creativity. Up to date test cases
should be made available to the community to facilitate the process of re-
executing the whole test suite. Moreover, the iterative process of testing the
single and integrated units, and then retesting the entire system behaviour
should follow the rapid evolution of the system. Online built-in testing
methodologies may simplify this “keep-in-touch activity'' by means of automatic
instrumentation and profiling of the code (via aspects, probes, and monitors)
[Mao, Lu and Zhang 2007]. These techniques dynamically collect input-output
and interaction data to facilitate the identification of functional and non-
functional misbehaviour of the system under control. Moreover, these
techniques could support the process of customer testing and continuous
testing by simplifying the collection and execution of transparent test cases.

Proportionally to the size of the community and the vitality of the project,
developers of OSS products should improve: testing automation, to simplify the
generation of oracles and stubs; regression testing, to avoid conflicts that arise
from program changes; the definition of acceptance tests, to avoid that some
feature of the completed product is untested; the sharing of testing knowledge,
to increase the reusability of test suites; the documentation of test-strategy/test-
plan/test-design/tests-results, to simplify the monitoring of the testing process.

For example, in our experience [QualiPSo2 2009], very few products use
available testing frameworks to support testing automation.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 38 of 132

3.3.5. I5 - Documentation and Dissemination

Poorly structured documentation, user manuals, bug reports, and technical
reports often characterize OSS. This is related to the fragmentation of human
resources: contributors prefer to focus their effort on coding rather than writing
documents. Moreover, the use of the network and of distributed resources
fosters the dissemination of the project knowledge via unstructured channels
(e.g., mailing lists, forums, and chat logs). Finally, the high modularity of the
projects and the frequency of changes do not favour the comprehension of the
global meaning of the entire project, thus fostering library-level documentation
instead of system-level documentation. A solution for this challenge is not
simple, for several reasons: for instance, it is not possible to either force
contributors to write documentations or employ technical writers; good
documentation requires skills that may not be always found in OSS developers.

While the unavailability of system documentation complicates acceptance /
system testing, usability testing, installation testing, and the sharing of testing
knowledge, the unavailability of testing documentation complicates the
monitoring of the whole testing process. The use of test management tools can
mitigate this problem, by simplifying the organization of the testing activities and
by automating the generation of testing reports.

For example, in our experience [QualiPSo2 2009], only 1 product (out of 32)
provides a complete documentation about its internal testing activities. Only
JBoss [www.jboss.org] exposes a detailed and up-to-date documentation about
testing plans, testing methodologies, test cases description, and test suite
results.

3.4. OSS-TMM-based Process Assessment

The approach we propose for companies, private developers/contributors, and
final users to assess the maturity level of the testing process of their products, is
compliant with the ISO/IEC14598 standard [ISO1 2001], which gives guidance
and requirements for evaluating software processes. OSS-TMM is based on
four main steps (S) as indicated in Figure 5, with an additional (optional) step
(S5):

S1: take into account the issues discussed in Section 3.3 and analyze the target
OSS product with reference to these issues. For each issue (and sub-issue),
verify the fulfilment degree of the product. To simplify this step, users can use
the checklist to sequentially examine the target product;

S2: define the Best Testing Process (BTP) on the basis of the results of step
S1. To simplify this step, users can apply the checklist (presented in Appendix
A) to identify the proper testing activities;

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 39 of 132

S3: isolate and briefly analyze the currently Available Testing Process (ATP) of
the product in order to list the properties and the already used testing
techniques;

S4: verify the intersection degree between the activities of the testing process
model derived in step S2 (BTP), with the ones analyzed in step S3 (ATP), and
identify the maturity level (ML) of the testing process referring to the maturity
levels identified in Section 3.2;

S5: final users can use the maturity level as an indicator that contributes to
assessing the quality and the trustworthiness of the OSS product they are
evaluating. Otherwise, they can use the maturity level to evaluate whether their
ATP needs improvement. If this is the case, they can improve the testing
process by following the recommendations and guidelines provided in BTP.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 40 of 132

Figure 5 – OSS-TMM main steps.

3.5. Preliminary Results

We empirically examined the OSS-TMM with two case studies. The first one
(BusyBox) with a focus on how a developer can improve the testing process of
his product, while the second one (Apache HTTP) with a focus on how a final
user can estimate the maturity of the product under evaluation. In this section,
we further report the results obtained by the correlation of six OSS maturity
levels with respect to their bug rate.

3.5.1. BusyBox evaluation

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 41 of 132

Here, we exemplify the methodology discussed in Section 3.2 with the BusyBox
OSS project. We applied OSS-TMM to BusyBox from the developer point-of-
view with the goals of 1) demonstrating the simple applicability of the OSS-TMM
to derive the maturity level of the product; 2) verifying whether the suggestions
provided by our model can actually improve BusyBox's testing process.

BusyBox [www.busybox.net] is an OSS project, developed in C, which has
the typical properties of OSS projects. BusyBox combines tiny versions of
common UNIX utilities into a single small executable, providing minimalist
replacements for the utilities usually found in Linux environments.

In this case study, we sequentially applied all the steps of our methodology: (1)
we analyzed BusyBox by scanning and answering each entry of the checklist;
(2) we identified the BTP in relation to the actual characteristics of BusyBox; (3)
we estimated the maturity level of the product; and (4) we redefined the
BusyBox ATP by following the suggestions provided by the BTP.

Step 1: Analysis of Issues.

Table 9 summarizes the BusyBox characteristics derived from the analysis of
the project through the checklist.

Table 9 – Step 1 outcome for BusyBox

Issue BusyBox characteristic

I1.1 the whole project is managed via SVN

I1.2 the whole project is well structured in 28 folders

I1.3 information about releases are visible

I1.4 information about code revisions are visible

I1.5 sensible data are manipulated (e.g., username, pwd)

I1.6 all the scripts are open source to the community

I1.7 the popular license GPLv2 is used

I1.8 log files are not available

I2.1 the project plan/roadmap is unavailable

I2.2 the risk analysis is unavailable

I2.3 the requirements analysis is unavailable

I2.4 the goal analysis is unavailable

I2.5 UML diagrams are unavailable

I2.6 the standard “Shell and Utilities OGB” is used

I2.7 coding standards and conventions are not identified

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 42 of 132

I2.8 performance requirements are not meaningful

I2.9 BusyBox does not follow a specific architectural style

I2.10 BusyBox is designed without a GUI

I2.11 BusyBox does not integrate external libraries/plugins

I3.1 none specific development process is followed

I3.2 developers are unstructured

I3.3 a sandbox environment is not provided

I3.4 none specific IDE is used/recommended

I3.5 none specific testing platform is used/recommended

I3.6 the Bugzilla bug tracking system is integrated

I4.1 24110 revisions in total

I4.2 38 developers/contributors

I4.3 the analyzed release is: V1.14.0

I4.4 the number of open/fixed bugs is provided

I4.5 BusyBox is a vital project

I5.1 the system-level documentation is unavailable

I5.2 the library-level documentation is unavailable

I5.3 a simple features-level documentation is available

I5.4 a short user manual is available (README file)

I5.5 bug reports are available

I5.6 the code documentation is unavailable

I5.7 documents are also disseminated via a mailing list

I5.8 installation requirements are not documented

I5.9 test documentation is unavailable

Step 2: BTP derivation.

The data collected during the previous step suggest that BusyBox is
characterized by a high degree of visibility. The browsing of the source code is
facilitated by the availability of a subversion system (SVN). Source files are
packaged in 28 main directories and information about number of revisions,
authors of the revisions, age of the latest revisions, and log entries is provided
for each directory. This facilitates the applicability of all the white-box testing
techniques and a clear identification of the units that compose the entire
system. The high level of modularity and the low level of interoperability among
the features of BusyBox seem to suggest that developers should focus on unit
testing activities.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 43 of 132

Non-functional issues are not of primary importance for this kind of tool, due to
its nature: BusyBox is a tool provided without a graphical interface thus
approaches such as capture and replay are infeasible; the use of monitors that
probe memory usage and execution/response time are not meaningful since the
tool only provides calls to simple functions. Finally, since BusyBox provides
replacements for most of the utilities usually found in GNU, developers should
pay attention to testing security aspects. It is realistic to imagine a scenario in
which a developer inserts malicious code into a BusyBox function to remotely
control the operating system of an end-user that has installed BusyBox. This
requires the execution of acceptance tests that check the main functionalities of
the tool in order to admit only trusted behaviours. For example, a test case
should verify that the Unix command su (superuser) must not record the
typed password.

As for issues I2, I3, I5, the BusyBox project is not supplied with project plans,
documents that describe the system requirements analysis, risk analysis,
technical documents that describe the use of standard protocols or patterns,
architectural models, etc. The only standard to which developers pay attention,
without completely adhering to it, is the “Shell and Utilities” portion of the Open
Group Base Standards. This strongly limits the applicability of all testing
solutions that are based on project specifications such as model-based and
conformance testing techniques. However, the web portal of BusyBox provides
a section that describes all the features and functionalities offered by BusyBox
in a structured way. Each feature description reports the input and output
parameters, the behaviour the feature should have, and how to use the feature.
This fosters the applicability of black-box techniques such as Category Partition
and Catalog-based testing techniques in addition to white-box testing
techniques. Moreover, developers and final users should share testing
knowledge with each other. Unit tests, system tests, and regression tests
results should be provided to the global community to favour and simplify
BusyBox's integration testing activity.

As for I4, BusyBox is a vital and consolidated project (latest revisions are
usually few days old and the analyzed release is V1.14.0) supported by a
small/medium-size community of developers (currently, 38 accounts exist on
busybox.net). It is characterized by a collaborative development process and
rapid system growth: at the time of writing, 24.110 revisions have been
performed by the community and forums and mailing lists are still alive and
fruitful. Also, the bug tracking system seems to indicate an active community of
developers (at the time of writing, several bugs have been recently fixed, some
bugs are unassigned and are waiting to be fixed, and the mean time required to
fix a bug is quite short: 3/4 days). All of these considerations seem to suggest
the need for a strong regression testing activity during the whole development
process of the BusyBox tool, to avoid bugs introduced by a lavish creativity.

Summarizing, the best testing process for BusyBox should take into account:
(1) unit testing activities; (2) integration testing activities; (3) regression testing
activities; (4) security testing activities; (5) acceptance/system testing activities;
(6) the identification and use of test management tools; (7) the documentation
and sharing of test results.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 44 of 132

Step 3: ATP analysis

Currently, BusyBox is released along with a test suite that can be executed by
final users and developers to identify problems and bugs when BusyBox is
installed on machines different from the tested ones. A quick look at the test
suite suggests that developers have designed test cases to only stress each
feature of BusyBox separately. Unfortunately, reports and documents that
discuss the test cases and the execution results are not provided. The testing
plan provided for BusyBox does not have the ability of automatically logging and
collecting the test results, and users must manually signal potential bugs to the
community.

Step 4: Maturity level evaluation

Comparing the BTP derived for BusyBox during Step 2 and the one currently
available, it is clear that the testing activity of BusyBox is actually poor (this is
also confirmed by the huge number of bugs posted by the community). The
intersection between BTP and ATP does not exceed 25% (only 1 activity out of
7 is currently supported by the ATP), thus BusyBox maturity level is ML=1. This
suggests the need for applying all the testing guidelines previously identified by
our methodology to increase the quality and the trustworthiness perception of
the tool.

Step 5: Testing process improvement

To improve the testing process of BusyBox, we selected a test management
tool (TestLink) to create and manage test cases and test plans, execute test
cases, track test results dynamically, and generate reports.

We planned integration, acceptance/system and regression testing activities,
and then we generated a set of test cases for each activity. Then, we executed
the test suites on a machine hosted in our lab with the following environment: 2
CPU Intel Xeon 3.73GHz (cache size 2048KB); 8GB RAM; 250GB Hard Disk;
Gentoo-r6 Linux distribution; Kernel 2.6.18; C compiler: gcc 4.1.2 with glibc 2.3.
reports the data collected during the execution of the test suites. Column
<BusyBox> reports the version of BusyBox under test; Columns <#of TCs>,
<#of Passed TCs>, <#of Failed TCs> report the total number of test cases for
each test suite, the number of test cases that succeeded (i.e., that ended with
no failures), and the number of test cases that failed (i.e., that resulted with the
software having a failure), respectively.

System/Acceptance testing has been performed by executing three different
sets of test cases against three different versions of BusyBox (Table 10 (a)). A
simple example of test case is test (pwd) = (busybox pwd): this test case simply
verifies that the working directory returned by the operating system is equal to
the one returned by BusyBox. The execution of the test cases allowed to
discover a lot of incompatibilities between BusyBox implementations of some
UNIX utilities in combination with the hardware and software environment used

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 45 of 132

for the experiments.

Regression testing has been performed by re-executing the 358 successful test
cases, designed for BusyBox V1.12.1, against the new stable releases V1.12.4,
V1.13.0 and V1.13.2 (Table 10 (b)). When executing the test suite against
BusyBox V1.12.4, none of the test cases failed. However, when executing the
test suite against the BusyBox V1.13.0, three test cases (that refer to the
taskset command) were not executed because taskset has been removed
from this version of BusyBox, and just one test case failed. An analysis of the
test result allowed us to identify a new error introduced by a code change
(related to the cpio command) in V1.13.0. The error even persisted in BusyBox
V1.13.2.

Integration testing has been performed by executing 48 test cases designed to
check the interoperability between the BusyBox implementations of the most
common UNIX utilities (e.g., cp command in combination with touch and cmp
commands). In this experiment, two test cases failed. The first one failed due to
an unsupported option (-t) for the od command when piped with the echo
command; the second one failed due to an unsupported option (--date=) for
the touch command when piped with the mv command.

This experiment demonstrates the simplicity of our Maturity Model, and also the
real benefits introduced by a well planned testing process. The activity of
applying the OSS-TMM to detect the maturity level of BusyBox (Step 1 to Step
4) required a limited effort (one skilled person fully worked one day for this
task). The activity of restructuring the testing process of BusyBox following the
suggestions provided by OSS-TMM (Step 5) required a strong effort (one skilled
person fully worked one week for this task). However, the restructured process
provided the ability to detect three new errors in BusyBox V1.13.2 with an actual
improvement of the BusyBox quality.

Table 10 – Test cases results for BusyBox

Acceptance/System Testing

BusyBox #of
TCs

 #of Passed TCs #of Failed TCs

V1.10.1 312 291 21

V1.12.1 387 358 29

V1.13.2 390 359 31

(a)

Regression Testing

BusyBox #of
TCs

 #of Passed TCs #of Failed TCs

V1.12.4 358 358 0

V1.13.0 358 354 1

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 46 of 132

V1.13.2 358 354 1

(b)

Integration Testing

BusyBox #of
TCs

 #of Passed TCs #of Failed TCs

V1.13.2 48 46 2

(c)

3.5.2. Apache HTTP Evaluation

Here, we apply OSS-TMM to the Apache HTTP project. We applied the OSS-
TMM to Apache HTTP from the final user point-of-view with the aim of
demonstrating how a non-skilled user can derive the maturity level of the
product he/she is evaluating.

Apache HTTP [http://httpd.apache.org/] is an open source HTTP
server for modern operating systems such as UNIX and Windows, which
provides HTTP services in sync with the current HTTP standards.

As in the previous case study, we sequentially applied all the steps of our
methodology, with the only exception that we focused on the steps followed by
a final user interested in evaluating the Apache HTTP product. Hence, we first
analyzed Apache HTTP through our checklist, we identified the BTP in relation
to the actual characteristics of Apache HTTP, and we estimated the maturity
level of the product by comparing the BTP and the Apache ATP.

Table 11 summarizes the Apache HTTP characteristics derived from the
analysis. We only report the issues that actually characterize Apache and are
useful to derive the BTP.

Table 11 – Step 1 outcome for Apache HTTP

Issu
e

Apache HTTP characteristic

I1.1 Apache is managed via an Historical Archive

I1.2 the whole project is well structured

I1.3 information about releases are visible

I1.4 information about code revisions are visible

I1.5 SSI and AAA modules are security critical

I1.6 all the test scripts are open source to the community

I1.8 access_log, error_logfiles are collectable

I2.7 coding standards are specified in a style guide

I2.8 performance constraints: resource usage, latency, throughput,

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 47 of 132

scalability

I2.11 external modules: mod_python, mod_ftp, mod_mbox

I3.5 The Apache-Test Framework is recommended

I3.6 the Bugzilla bug tracking system is integrated

I4.1 the number of revisions is huge

I4.2 more than 100 developers/contributors

I4.3 the analyzed release is: V2.2.11

I5.8 installation requirements are documented (but not up-to-date)

I5.9 test documentation is unavailable

Starting from the Apache characteristics highlighted in the previous step, the
best testing process for Apache should take into account: (1) unit testing
activities; (2) integration testing activities; (3) regression testing activities; (4)
security testing activities; (5) performance testing (load testing, stress testing,
endurance testing, etc.); (6) versioning compatibility checks; (7)
acceptance/system testing activities; (8) source code inspection through
checklists for C/C++; (9) use of test management tools; (10) installation testing
activities; (11) documentation and sharing of test results.

Currently, the source code of Apache HTTP is released with a small test suite
that tests the critical features of the project. Moreover, the project supports the
SPECWeb99 benchmark, Flood subproject, and the Apache-test framework.
SPECWeb99 and Flood can be used to gather important performance and
security metrics for websites that use Apache HTTP. The Apache-test
framework supports the definition of test suites for products running on the
Apache HTTP, and can be used to run existing tests, setup a testing
environment for a new project, and develop new tests. However, a complete
test suite for integration and regression testing is not provided and also source
code inspection, and versioning compatibility checks are not yet performed. The
requirements 1, 4, 5, 7, 9, 11 of BTP are addressed by the ATP of Apache
HTTP, thus implying an Apache Maturity Level of ML=3.

This case study demonstrates how simple it is to apply (with a minimal effort)
the OSS-TMM to complex projects as well, as in the case of Apache HTTP. The
checklist strongly simplifies and supports the analysis by suggesting step-by-
step activities that non-skilled people can follow to determine the maturity level
of the product under evaluation.

3.5.3. Other Evaluations

Finally, we applied the OSS-TMM to four additional OSS projects to evaluate
their maturity level, and we look for correlation patterns between the obtained
score with dependent measures to comprehend whether a high maturity of the

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 48 of 132

testing process directly means a high quality of the product, and a low maturity
directly means a low quality.

We selected the four OSS projects by evaluating their size, their organizational
type (i.e., sponsored, foundation, spontaneous) and their diffusion to identify a
heterogeneous set of OSS projects. We selected: the Debian distribution
(DebianOS) as a well known, sponsored, and complex OSS product; the Data
Display Debugger (DDD) as an unfamiliar, sponsored, and a project with
reduced complexity; the OSS database PostgreSQL as a specialized,
sponsored, and complex product; the web content management system
(Xoops) as a specialized, founded project of reduced complexity.

As for the dependent measure, we decided to select the bug rate (BR) of the
product (i.e., the number of bugs divided by the product size in thousands of
lines of code KLOC), which is a reliable indicator of the overall product quality.
Table 12 resumes the obtained results. Bugs data have been collected by
analyzing the bug tracker system of each product with focus on open bugs. We
selected the latest stable release of each product to avoid strange bug
distributions related to newly released and unstable products. We used
SLOCCount (developed by D. Wheeler) for counting the physical source lines of
code of each project [www.dwheeler.com/sloccount/].

Table 12 – Maturity Level (ML) and Bug Rate (BR) for six OSS products

OSS Project ML SLOC BUG BR

Apache HTTP v2.2.0 3 135916 19 0.14

BusyBox v1.13.2 1 177013 9 0.05

DDD v3.3 1 119194 14 0.12

DebianOS v3.0 1 10467902
6

 10968 0.11

PostgreSQL v8.3 4 909148 37 0.04

Xoops Core v2.3 2 74551 35 0.47

The collected data do not completely confirm our initial hypothesis (i.e., a better
testing process always means a higher quality of the product and vice versa). In
effect, projects with a very low ML (such as Debian, DDD, and BusyBox) have a
very low bug rate; projects with a medium ML (such as Xoops) have a high bug
rate; and projects with a high ML (such as Apache HTTP and PostgreSQL)
have a low bug rate too. Hence, the collected data partially confirm our
hypothesis: a well planned testing activity favours the overall quality of the
product. Of course, the sample used in this experiment is limited in the number
of products, but it is an interesting starting point for additional experiences.
Moreover, the bug rate is computed by analyzing the bug tracker system of
each product, thus introducing variability due to the quality of the published

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 49 of 132

data. For instance, we detected a discrepancy in BusyBox between our test
cases results (see Table 9) and the number of bugs reported by the bug tracker
system (see Table 12). Further experiences should take into account additional
measures such as the defect rate of the products. Currently, we are correlating
the collected MLs with the code coverage provided by the available test suites
of each project under analysis in order to validate the results obtained in Table
12.

OSS-TMM has also been internally applied at Siemens AG to evaluate the
testing maturity level of TPTP. The evaluation has been carried out twice.
Firstly, we applied the OSS-TMM checklist and we computed its ATP surfing the
information stored into the TPTP repository. The second evaluation has been
carried out interviewing TPTP project leaders and developers. The first
evaluation (repository based) resulted in a maturity level ML=2 (intersection
between ATP and BTP is equal to 34,78%) and the second evaluation (TPTP
project lead/board members) resulted in the same maturity level (with an
intersection equals to 47,83%). In this way, we validated the results of the first
evaluation.

3.6. Related work

We compare OSS-TMM with what has been done in some related research
areas that address software quality management.

Software Process Improvement

Research in software process improvement focuses on certification models that
deal with the quality of the software production process. The most important
models are CMM and SPICE [Herbsleb, et al. 1997] [ISO2 2004]. The
Capability Maturity Model (CMM), and its extension CMMI, is a methodology
that assists companies in understanding the capability maturity of their software
processes. The maturity model involves several aspects related to five maturity
levels (chaotic, repeatable, defined, managed, and optimizing), a cluster of Key
Process Areas (KPA) (i.e., related activities that, when performed collectively,
achieve a set of important goals), a set of goals (i.e., scope, boundaries, and
intent of each key process area), common features (i.e., practices that
implement a KPA), and finally key practices (i.e., the elements that effectively
contribute to the implementation of the KPAs).

The Software Process Improvement and Capability dEtermination [SPICE /
ISO15504] is a framework for the assessment of processes. The SPICE
reference model focuses on a wider vision than CMM by taking into account five
process and capability dimensions (customer-supplier, engineering, supporting,
management, and organization). In compliance with CMM, they define a scale
of capability levels, a cluster of process attributes (to measure capability of
processes), a set of generic practices (i.e., indicators to aid assessment
performance), and a process assessment guide.

Our approach is built upon the general ideas proposed by CMM and SPICE.
QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 50 of 132

However, OSS-TMM uses a simpler and less rigid maturity model than CMM
and SPICE, because of its purpose and its focus on the testing dimension.
Moreover, the OSS-TMM process assessment also suggests how to improve
the available testing process of an OSS product by recommending the most
suitable testing techniques.

Software Product Quality

The most important standard to ensure the quality of the product is ISO9126
[ISO3 2001]. ISO9126 standard takes into account several aspects of the
internal, external, and in-use quality of a software product and it defines a
quality model that includes a set of characteristics and sub-characteristics
related to functionality, reliability, usability, efficiency, maintainability, and
portability. In ISO9126 a wide set of complex measures are defined to assess
product quality, while ISO14598 [ISO1 2001] provides an explanation of how to
apply the ISO9126 model.

Our approach focuses on the quality of the testing process instead of the whole
product quality and it simplifies the evaluation of the process maturity by
providing a checklist instead of a complex list of measures. The steps that
compose the OSS-TMM process assessment are compliant with the guidance
and requirements for software evaluation highlighted in ISO14598.

Testing Maturity Models

Research in testing maturity models complements CMM with the focus on
testing aspects. The first work on this research area is provided by Burnstein et
al. in [Burnstein, Suwanassart and Carlson 1996]. They defined a Testing
Maturity Model (TMM) that helps evaluate the testing process of software
products. TMM identifies five rigid maturity levels, a set of maturity goals and
sub-goals (equivalent to KPAs of CMM), and a set of activities, tasks and
responsibilities (ATR) for each maturity level.

Other CMM-based testing models have been proposed. For example, the Test
Improvement Model (TIM) [Ericson, Subotic and Ursing 1997] and the Test
Process Improvement Model (TPI) [Koomen and Pol 1999] suggest ways in
which testers can improve their work. TIM and TPI identify key areas for the
testing process starting from the organization and planning of testing activities
to test cases generation, execution, and documentation review.

While the previous approaches have been designed with CSS characteristics in
mind, OSS-TMM exploits the inherent characteristics and issues typical of OSS
products. Hence, OSS-TMM defines four maturity levels that are not structured
as sets of predetermined maturity characteristics and goals, but they depend on
the actual characteristics of the product under evaluation. Moreover, OSS-TMM
supports both testers in improving the testing process and also companies and
final users in assessing the quality and the trustworthiness perception of the
OSS product.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 51 of 132

OSS Quality Assessment

Research in OSS quality assessment extends CMM and CMM-compliant
models to identify, from the set of CMM goals, only the subset that is relevant
for OSS products. The first CMM extension for OSS is the Open Source
Maturity Model (OSMM) [Duijnhouwer and Widdows 2003]. OSMM defines a
methodology and a set of OSS ad hoc indicators to assess the global maturity
of an OSS product, helping final users to choose between equivalent OSS
products. Since the definition of OSMM, several other models have been
developed see as example [Taibi, Lavazza and Morasca 2007].

OSS-TMM does not provide a global assessment of the product quality but uses
the testing process maturity level as an indicator of the process quality. This
simplifies the applicability of the approach and the identification of weaknesses
into testing processes.

3.7. Final remarks

We have outlined the levels of a new Maturity Model (OSS-TMM) for the testing
process of OSS projects and we have described the goals it helps reach and
the issues involved. Applications to BusyBox, Apache HTTP and TPTP show
how the issues come into play on real-life projects. Having a Maturity Model for
the testing activities of OSS processes may even be more important than in
CSS. OSS processes are usually much less structured than CSS processes
and may be considered closer to Agile development and XP in many respects.

The approach needs to be applied to more OSS projects, to gather enough
information about its actual effectiveness in several domains. We believe that
continuous gathering and analysis of experience will help pinpoint specific
issues of OSS testing and better address the building of a more refined and
useful OSS Testing Maturity Model. Moreover, the correlation between the
maturity levels of the project under analysis with the code coverage of their test
suites will provide another important indication about the validity of our
approach. We are also investigating whether there is a correlation between
classes of OSS products (such as operating systems, middleware systems,
CMSs, etc.) and common best practices to test these classes of products. This
will help the identification of common automatic testing supports that could
simplify the testing process of these classes of products.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 52 of 132

4. T-DOC FRAMEWORK

In this section, we introduce the T-DOC framework. The presentation is
organized as follows: first, a report of the analysis confirming the low availability
of testing documentation is presented; the motivations that are at the basis for
adopting built-in testing in the context of OSS products is discussed next; then,
the T-DOC framework and how it comes into play when applied to two case
studies.

4.1. The Lack of OSS Documentation

The perception we normally have surfing the web portal of OSS products,
observing OSS forums/blogs/discussions, and using OSS products in our every-
day work is that most of the available OSS projects are released without user
manuals and technical documents.

To have an empirical evidence of this perception, we conducted a two-fold
analysis: first, we interviewed 151 OSS users (end users, developers,
managers, OSS experts) and then, we analyzed the web portal of 32 well-
known OSS projects. An extensive report of these experiences can be found in
[QualiPSo1 2009] [QualiPSo2 2009]. The first analysis aimed to identify the
importance the factor "availability of technical documentation / user manual"
have for OSS users. We discovered that in a scale from 1 (negligible
importance) to 8 (fundamental importance), the factor "availability of technical
documentation / user manual" took a very high score equal to 6.5. The second
analysis aimed to check the actual availability of technical documentations and
user manuals related to the 32 analyzed projects. We discovered that: 69% of
the projects have up-to-date user manuals while the remaining 31% have not
updated or available user manuals; 49% of the projects have an up-to-date
technical documentation, while the remaining 51% have not an updated or
available technical documentation.

This deficiency is exacerbated if we look at testing documentation: in our
analysis, only 1 product (out of 32) provides a complete documentation about its
internal testing activities. Only JBoss [www.jboss.org] exposes a detailed and
up-to-date documentation about testing plans, testing methodologies, test cases
description, and test suite results. We believe that this is primarily due to three
main reasons: first, the use of classical testing methodologies that are based on
external testing (i.e., test cases are independent components that are separated
from the applicative code) drastically augment the fragmentation of data, thus
further complicating the process of documenting testing activities; second, the
lack of well-agreed best practices on how to test OSS products increases the
effort required for testing applications, thus stealing effort in documenting
testing activities. In this document, a methodology to assess and improve the
testing process of OSS products is presented in Section 2.6; finally, the lack of
tools, which support and automate the documentation of testing activities,
leaves too much effort to the side of developers.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 53 of 132

This analysis confirms our intuition and demonstrates the need for a framework,
based on built-in testing, that supports the automatic generation of testing
documentation. The next section discusses why a built-in testing methodology
is preferred to external testing solutions.

4.2. Built-in test in OSS

Built-in test (BIT) approaches for software systems originated in the context of
component-based systems both to simplify the integration of third-party black-
box components and also to enhance software maintainability [King, Wang and
Wickburg 1999]. A BIT component (or BIT class) is a traditional component that
puts together application code with testing code [Beydeda 2005]. A BIT
component can operate in a normal mode (i.e., testing capabilities are
transparent to the user) or in maintenance mode (i.e., the user can test the
component in his environment by exploiting the built-in testing capabilities) by
interacting with the normal or the testing interface, respectively. Listing 1 shows
a code excerpt for a typical component with built-in testing abilities, where test
cases are declared and implemented directly into the applicative class.

Class class_name {

//normal interface

Data declaration;

Constructor declaration;

Destructor declaration;

Methods declaration;

 //testing interface

Tests declaration;

//normal implementation

Constructor;

Destructor;

Methods;

//testing implementation

Test cases;

}

Listing 1 – Code excerpt of a BIT component.

In the context of OSS, the heterogeneity of the developers/contributors
increases the fragmentation of the source code and makes unfeasible the
adoption of common external testing methodologies, programming rules, and
testing tools that could favour the whole comprehension of fragmented testing
activities. Keep in mind simple programming rules (as shown in Listing 1) can

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 54 of 132

favour the standardization of a common programming style that can improve the
testing activity, decrease the effort spent in testing, and simplify the generation
of testing documentation. Whenever a developer/contributor of an OSS product
introduces or modifies a functionality of a component, she designs and codes
unit tests, integration tests and optionally non-functional tests into the
component to provide BIT abilities. Modified components are then uploaded into
the repository that stores the project and are integrated to generate the OSS
product with comprehensive BIT abilities (as shown in Figure 6).

Figure 6 – Aggregating components into an OSS product with BIT abilities.

Putting together application code and testing code into single classes improves
the visibility and inheritance of test cases, it favours the standardization of
testing interfaces, and it augments aggregation of data, thus simplifying the
discovery of testing data and the correlation with coding elements. Moreover,
the documentation of test activities and the report of test case results is made
easier, thus simplifying regression testing activities. BIT favours run-time
testing: the system can be executed at run-time in maintenance modality
[Suliman, et al. 2006], thus simplifying the detection of bugs that are
undetectable in the controlled testing environment. Moreover, the test suite can
be executed over different HW/SW platform configurations, thus simplifying
system, configuration and performance testing. Hence, the "eye bird" ability,
which is typical of OSS products (i.e., the capacity to evaluate a product by the
large glance of the OSS community), can be fully exploited and can be
complemented by testing activities.

However, BIT also introduces risks and limitations that need to be faced when

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 55 of 132

designing the T-DOC framework: run-time testing can move the system in an
inconsistent state that may compromise the stability of the system. To mitigate
this risk, the test suite must be executed in background only once, during the
OSS product installation (or during critical updates). Moreover, BIT is an
intrusive mechanism that can lead to security and privacy-related problems. To
mitigate this risk, final users must be advised about the BIT abilities of the OSS
product, so that they can block the BIT abilities, and user-related data must not
be collected by the framework. Finally, if built-in tests are executed without a
control, system performance can degrade. The execution of the built-in test
suite in background, during the OSS product installation, alleviates this problem.

To the best of our knowledge, we believe that the use of BIT abilities, instead of
external testing mechanisms, is the only way to support and simplify the
generation and the gathering of testing documentation in the domain of OSS.

4.3. The T-DOC framework

We present the T-DOC framework and we detail its threefold support by
separately discussing:

• the automatic generation of test cases documentation,

• the automatic generation of suggestions about integration and regression
testing activities, and finally,

• the generation of reports about the results of the test suite execution.

4.3.1. Test cases documentation

This first layer of support aims at simplifying and supporting the automatic
generation of the documentation about test cases and test suites. The
generated documentation should increase the readability of the technical
aspects of each test case, and should favour an overall comprehension of the
testing activity. To allow the automatic execution of this process, built-in test
cases must be surrounded by doc comments (i.e. short sentences that describe
the test case, its purpose and its behaviour) and keywords in a similar way
comments and block taglets surround methods and functionalities in Java
source code. Testing doc comments (T-DOC comments) and block taglets are
then parsed and elaborated by the T-DOC engine to generate the test case
documentation in a similar way the Javadoc tool operates.

Javadoc is a tool from Sun Microsystems for generating API documentation out
of declarations and documentation comments in Java source code. Javadoc
produces HTML documentation describing the packages, classes, interfaces,
methods, etc. of a software system. The output format of the Javadoc can be
customized by means of doclets. Javadoc parses special tags embedded within
a Java doc comment. These doc tags are used to automatically generate a

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 56 of 132

complete, well formatted API from the source code. All tags start with a (@), e.g.,
@author. The tags are used to add specific information like a method's
parameters (@param), return type (@return), and exceptions (@exception).

To minimize the effort of developers and contributors in writing testing
documentation, to favour standardization, and to avoid subjective interpretations
of data, we clearly define a set of new conventions and a set of new tags that
developers and contributors should follow whenever they add a T-DOC
comment. An example of a real T-DOC comment can be found in Figure 7.

Figure 7 – A built-in test case with T-DOC comments for the RealEstate application.

The defined conventions are:

1)the first line contains the begin-comment delimiter (/**)

2)write the first sentence as a short summary of the test, as T-DOC
engine automatically places it in the summary table of the test

3)insert a blank comment line between the description and the list of
tags

4) the first line that begins with an "@" character ends the
description

5)there is only one description block per T-DOC comment

6)the last line contains the end-comment delimiter (*/)

The new defined tags are:

@param (name of the parameter, followed by its description)

@return (omit @return for tests that return void; required otherwise)

@succeedIf (summarize the conditions under which the test case
succeeds)

@failIf (summarize the conditions under which the test case fails)

@qualityAttribute (specify the quality category addressed:
performance, security,...)

@scope (specify the test case purpose: unit, integration, structural)

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 57 of 132

@author (author name/surname)

@version (version number + checkout date)

@see package.Class#method(Type,...)(ref to the functionality under
test)

Figure 8 shows a subset of the functionalities provided by the T-DOC engine.
The T-DOC engine takes in input the set of classes that are added/modified by
the developer. Each class is analyzed separately to discover and isolate the
built-in test cases and their T-DOC comments. The Test Suite Builder
component aggregates all the built-in test cases into a single test suite, and the
T-DOC TCs component parses all the t-doc comments to generate the
complete documentation of the test suite. Finally, the engine publishes the
documentation to the central repository (Test Tracker) of the project to avoid
fragmentation and versioning problems of the documentation. Versioning
problems are also avoided by means of the introduction of the new tag
@version.

Figure 8 – Architecture of the first T-DOC layer.

To favour the comprehension of this layer, we exemplify the writing of a T-DOC
comment for a built-in test case we derived for the RealEstate OSS Java

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 58 of 132

application [NCSU 2009], which will be used as proof-of-concept of our work.
Figure 7 shows the source code of the built-in test case surrounded by a T-DOC
comment and T-DOC tags. Purpose of this figure is not to present the internal
code of the test, but to highlight the structure of a T-DOC comment.

The documentation automatically generated by the T-DOC engine for the
aforementioned test case looks like as follows:

ID001:: UNIT Test: testGainMoneyCardAction

V1.0.2 05-26-09

Tests the behavior of the applyAction()functionality. Check whether
the account of the current player’s CCard is properly updated when a
gain of money is performed.

Succeeds if: getMoney() returns a value = 1550$

Fails if: getMoney() returns a value != 1550$

See: edu.ncsu.realestate.MoneyCard.applyAction()

The T-DOC engine generates a documentation that is compliant with the visual
representation of Javadoc comments, with small differences (such as the use of
a label for each test ID00X), in order to maximize both the compatibility
between the tools and also the readability of the documentation.

In Section 4.3.4, we present a thorough case study of the application of the first
layer of T-DOC. We have utilized it during the development of MACXIM – a tool
to collect metrics from Java code.

4.3.2. Regression and Integration testing documentation

This second layer of support aims at suggesting and documenting the
integration and regression test cases that OSS contributors should develop
during the update/maintenance of their OSS products. The generated
documentation should simplify the contributors' task of writing these test cases.
To this end, the critical dependencies among methods and components must
be detected by the T-DOC engine and visually reported to the developer. The T-
DOC engine exploits and extends the idea of change points and call
graphs [Mao, Lu and Zhang 2007] [Orso, et al. 2001] to automatically detect
the source code location in which a code change has been performed, and to
automatically create the graph of calls related to the method in which the
change has been detected. These graphs are used by the T-DOC engine as
starting point to create the suggestions for integration and regression testing
activities.

Figure 9 shows a subset of the functionalities provided by the T-DOC engine.
This layer of the T-DOC engine is composed of three main modules: the T-DOC
Integration module, the T-DOC Regression module and the Call Graph
tool.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 59 of 132

Figure 9 – Architecture of the second T-DOC layer.

T-DOC Integration module is responsible for suggesting integration testing
scenarios that should be implemented by the OSS contributors whenever a new
method is added or whenever an existing method is modified (i.e., the
@version tag of the associated test case is updated). Integration testing
checks dependencies among objects of different classes. Class A and B are
related if objects of class A make method calls on objects of class B, or if
objects of A contain references to objects of B. The T-DOC Integration
takes in input the documentation generated by the T-DOC TCs module (Doc1
A.T1), and it generates the call graph for the change point (CP) that is related to
the documented test case. To avoid the explosion of the graph size, we limited
the computation to the third level of method's dependencies. Referring to our
RealEstate example of Figure 7, the OSS contributor is working on the
MoneyCard class. He is modifying the applyAction()method, and he is
writing the built-in test case testGainMoneyCardAction(). First of all, the
T-DOC Integration module computes the call graph for the change point
applyAction(), then it produces the integration testing scenario for this
change. Figure 10 shows the result of this computation (Doc2Int). The root of
the graph is the CP applyAction(), while leafs are the methods that directly
or indirectly interact with the applyAction() method.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 60 of 132

Figure 10 – Generated integration testing scenario for the testGainMoneyCard
Action().

The T-DOC Regression module is responsible for automatically detecting the
subset of relevant test cases for regression activities whenever a change into
the code is performed. Without this support, OSS contributors are forced to
manually rerun all the test cases in the test suite for regression purposes. This
task is very expensive for contributors that are not interested in testing. For
instance, rerunning the complete test suite for the OSS WEKA application
[www.cs.waikato.ac.nz/~ml/weka/] require 45 minutes in a fully
dedicated machine. Moreover, other problems are: who runs the test suite?
Where does one store the test cases that should be re-executed? When must
the test cases be rerun? Where are reported the results of the test suite
execution? All these problems are addressed by the T-DOC Regression
module. This module takes as input the change point and also the complete set
of call graphs computed for each test case by the Call Graph Tool module.
Then, the T-DOC Regression module scans all the call graphs to detect the
subset of graphs that are affected by the change point (i.e., the change point is
present into the graph). The subset of relevant call graphs indicates the
meaningful test cases that should be re-executed with respect to the change
that has been performed. The algorithm that the T-DOC Regression module
computes for detecting the subset of meaningful test cases is outlined next:

Input: test cases, CP

Output: documentation of the subset of meaningful regression test
cases

1. derive the call graph for each test case stopping at the third
level of dependencies;

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 61 of 132

2. select a graph as starting entry;

3. scan the graph in order to detect whether the change point is
present;

4. if the change point is present: select the test case for
regression;

 else: jump to step 2.

5. when all the graphs have been evaluated, generate the regression
documentation as the list of test cases wrt the CP

For the RealEstate application the T-DOC Regression module takes in input,
from the Call Graph Tool, 30 graphs and generated the following
documentation (Doc2Reg):

This is the subset of regression test cases for the applyAction()
change point:

01) testGainMoneyCardAction()

02) testMovePlayerCardAction()

03) testLoseMoneyCardAction()

04) testJailCardAction()

05) testJailCardUI()

06) testLoseMoneyCardUI()

07) testMovePlayerCardUI()

For space reason, we do not show the complete set of graphs computed by the
T-DOC engine. Moreover, in this paper, we do not provide the empirical
evidence that the coverage obtained by the subset of the selected test cases is
actually the best one. We are conducting additional experiments in this
direction.

All the data provided by this second layer (Doc2Int, Doc2Reg and the
regression test suite) are published into the central Test Tracker system.

4.3.3. Test cases execution report

This third layer of support aims at homogenizing and collecting both all the
outputs coming from the T-DOC framework and the results obtained by the
execution of the test cases. In this section, we only introduce the design of this
layer since an implementation is not yet available. This layer is composed of
two main entities: the Test Tracker system and the part of the T-DOC
engine that is responsible for collecting and manipulating the test case results.

The Test Tracker system is responsible of managing: (1) the class
containing all the built-in test cases that are incrementally added (or modified) to
the test suite (Class TestSuite); (2) the class of integration test cases (if

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 62 of 132

available); (3) the class containing the regression test cases derived by the T-
DOC Regression module. The Test Tracker system stores the
documentation of each test case (Doc1 A.T1, Doc1 A.T2, Doc1 A.Tn) and
aggregates this documentation in a single document that describes the
complete behaviour of the test suite. Moreover, the Test Tracker system
stores the documentation related to integration and regression test cases
(Doc2Int and Doc2Reg), and it aggregates this documentation in a single file.
Finally, the Test Tracker system provides search abilities among all the T-
DOC documents that are published by the T-DOC engine. As in Bug tracker
systems (such as Bugzilla [www.bugzilla.org]), T-DOC documents can be
searched and filtered by means of ad-hoc keywords. These keywords are
equivalent to the tags we defined in Section 4.3.1. For example, you can filter
your search by @author (T-DOC documents are grouped regarding to the
owner of the test cases) or by @scope (T-DOC documents are grouped
regarding to the purpose of test cases).

As mentioned in Section 4.2, built-in test cases favour the execution of run-time
testing [Suliman, et al. 2006]. The T-DOC engine exploits this feature and it is
able to collect the results of the run-time execution of the test suite. Figure
11Errore: sorgente del riferimento non trovata shows the modules involved in
this task. The two T-Report modules collect the results of the test cases
execution. Hence, the two modules correlate these results with the run-time
HW/SW configuration of the execution environment in which test
cases have been executed. The output of these correlations are two reports
(Report a and Report b) that document the results of the run-time testing
activity. Currently, we are working on the identification of the profile information
that should be collected by the Profile Manager module (such as log files,
active processes, HW/SW capabilities, etc.), and we are implementing this third
T-DOC layer to support the testing documentation of Java OSS projects.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 63 of 132

Figure 11 - Architecture of the third T-DOC layer.

4.3.4. The MACXIM Case Study

To validate the first layer of T-DOC, we applied the T-DOC method to the
development of MACXIM. All the test cases, which we designed and coded for
MACXIM, have been implemented following the guidelines and the
documentation rules imposed by the first layer of T-DOC. The MACXIM test
suite is composed of a set of unit test cases (one test case for each method of
the application) and a set of acceptance test cases. For space reasons, we do
not report the details of the whole test suite, but we only provide in Table 13 an
excerpt of the MACXIM test plan.

Table 13 - Test Plan for MACXIM

TEST NAME DESCRIPTION EXPECTED
RESULTS

APPLICATION SECURITY
LOGIN Input: username, password
Login1 Perform the login to MacXim sending a message with

a correct username and password
The login is
correctly performed

Login2 Perform the login to MacXim sending a message with
an incorrect username and password

The system must
return an error
message

LOGOUT Input: -
Logout1 After Login1 test, check if the logout is properly

performed
The logout is
properly performed

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 64 of 132

PROJECT MANAGEMENT
PROJECT UPLOAD Input: project name, version, [release], [revision], repo. type, url repo, [use.rname],
[password]
ProjectUpload1 Upload project with the following parameters:

project1, 1, svn,
http://qualipso.dscpi.uninsubria.it/svn/svntest/ ,
svntest, svntest

The project is
correctly uploaded

ProjectUpload2 Upload the same project as ProjectUpload1 The system must
return an error
message

GET PROJECT LIST Input: -
GetProjectList1 After ProjectUpload1 test, check if the project is

included in the list
The project is
included in the list

GET PROJECT METADATA Input: project name, version, [release], [revision]
GetProjectMetadata1 After ProjectUpload1 test, check if metadata are

correct
The project
metadata are
correct

DELETE PROJECT Input: project name, version, [release], [revision]
DeleteProject1 After ProjectUpload1 test, delete a project with the

following parameters: project1, 1
The project is
deleted

DeleteProject2 After ProjectUpload1 test, delete a project with the
following parameters: project1 (without specifying
release number)

The system must
return an error
message

PROJECT ANALYSIS
all tests will be executed on the application: http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/ ,
svntest, svntest
GET ALL APPLICATION LEVEL METRICS
ApplicationMetrics1 Get all values (total, min, max, std-dev, median, avg)

for each metric and check that the returned values are
the same of the expected values

Values returned
and expected are
the same

ApplicationMetrics2 Get all values (total, min, max, std-dev, median, avg)
for each metric and check that no values are returned
when not expected

No values are
returned when not
expected

ApplicationMetrics3 Get all values (total, min, max, std-dev, median, avg)
for each metric and check that the returned values are
different from some wrong values

Returned values are
different from
some wrong values

GET ALL PACKAGE LEVEL METRICS
PackageMetrics1 Get all values (total, min, max, std-dev, median, avg)

for each metric and check that the returned values are
the same of the expected values

Values returned
and expected are
the same

PackageMetrics2 Get all values (total, min, max, std-dev, median, avg)
for each metric and check that no values are returned
when not expected

No values are
returned when not
expected

PackageMetrics3 Get all values (total, min, max, std-dev, median, avg)
for each metric and check that the returned values are
different from some wrong values

Returned values are
different from
some wrong values

GET ALL CLASS LEVEL METRICS
ClassMetrics1 Get all values (total, min, max, std-dev, median, avg)

for each metric and check that the returned values are
the same of the expected values

Values returned
and expected are
the same

ClassMetrics2 Get all values (total, min, max, std-dev, median, avg)
for each metric and check that no values are returned
when not expected

No values are
returned when not
expected

ClassMetrics3 Get all values (total, min, max, std-dev, median, avg)
for each metric and check that the returned values are
different from some wrong values

Returned values are
different from
some wrong values

GET ALL METHOD LEVEL METRICS

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 65 of 132

MethodMetrics1 Get all values (total, min, max, std-dev, median, avg)
for each metric and check that the returned values are
the same of the expected values

Values returned
and expected are
the same

MethodMetrics2 Get all values (total, min, max, std-dev, median, avg)
for each metric and check that no values are returned
when not expected

No values are
returned when not
expected

MethodMetrics3 Get all values (total, min, max, std-dev, median, avg)
for each metric and check that the returned values are
different from some wrong values

Returned values are
different from
some wrong values

In total, 84 test cases have been implemented (47 for unit test and 37 for
acceptance test). Figure 12 shows an example of a test case that follows the
tag conventions defined in T-DOC. In Appendix B, we report the T-DOC
documentation automatically generated for the MACXIM case study.

Figure 12 - A sample MACXIM test case with T-DOC comments.

The benefits of using the T-DOC support during the MACXIM development
were real:

1) the automatic generation of the testing documentation was very simple,
and the documentation was always up-to-date;

2) both developers and testers had the possibility of accessing every time

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 66 of 132

they needed the testing documentation, to understand whether MACXIM
contains faults or misbehaviours that need special attention;

3) communication among developers and testers was actually sped up by
means of the always available documentation.

These considerations are supported both by the perceptions that had
developers and testers during the development of MACXIM after the
introduction of the T-DOC framework (22nd of July 2009), and also by the trend
of discovered (and then fixed) faults in MACXIM, as shown in Figure 13. Figure
13 focuses on the metrics implemented in MACXIM that we were able to detect
as faulty metrics by means of testing activities. The graph clearly shows that the
availability of the testing documentation (the blue arrow indicates the adoption
of T-DOC) simplified the process of detecting the faulty metrics, accelerated the
process of correcting the faulty one, and finally favoured the process of
implementing new metrics. After the adoption of the T-DOC framework (as the
blue arrow shows), the number of faulty metrics decreased from 10 to 4 (-60%)
in a few days, the number of corrected metrics increased inversely to the faulty
metrics and the number of new metrics increased from 22 to 28 (+28%).

Figure 13 - Correct / Incorrect MACXIM metrics discovered by test.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 67 of 132

4.4. Final remarks

We have outlined the T-DOC framework in this section. The T-DOC objective is
to support a team of OSS developers in creating test documentation that will
enhance OSS trustworthiness. It does so in several ways:

(1) T-DOC introduces a set of new tags similar to Java Doc tags to be included
in testing code that will be used to generate automatic documentation;

(2) T-DOC analyses the source code to suggest integration and regression
tests;

(3) T-DOC supports archiving of testing documents in central repositories.

The T-DOC framework development is still under way but we could apply T-
DOC two case studies to evaluate its applicability and real benefits. Firstly, we
utilized it in OSS RealEstate Java to prove the concepts underlying T-DOC.
Subsequently, T-DOC was utilized in a real project involving several developers
during the development of a tool for metrics collection in Java code.

T-DOC benefits we perceived both qualitatively and quantitatively. According to
developers, testing documentation was easily generated; information regarding
the tests was always available and up-to-date; and communication among
developers was sped up. Quantitative improvements were observed as well: the
number of faulty metrics decreased since the adoption of T-DOC and the
number of new metrics correctly implemented increased.

We believe T-DOC addresses many issues associated to OSS testing
documentation. It does not only support the document production but also
drives the testing activity by suggesting the development of integration and
regression tests and saving the documents created. By making the test
documents available in repositories a stakeholder (a software company, a
developer or an end-user) will have subsidies to assess OSS trustworthiness.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 68 of 132

5. CONCLUSIONS

Open Source Software (OSS) products do not usually follow the traditional
software engineering development paradigms found in textbooks. Specifically,
testing activities in OSS development may be quite different from those carried
out in Closed Source Software (CSS) development, also due to the fact that
OSS processes often seem to be less structured than CSS ones. Since testing
may require a good deal of resources in OSS, it is necessary to have ways for
assessing and improving OSS testing processes.

In this document, we evaluated the coverage with respect to structural testing
criteria provided by OSS test suites. Control- and data-flow based—all-Nodes,
all-Edges, all-Uses, and all-Potential-Uses—criteria were utilized. Eight OSS
projects were analyzed, namely, HSQLDB, HTTPUnit, JasperReports, JMeter,
JUnit, Log4J, PMD and Velocity. The coverage data obtained reveals that in
general test suites need improvement. Five analyzed OSS projects obtained
code coverage below 40%; two obtained coverage data around 50%; and only
one OSS project obtained coverage above 70%, which is recommended for
CSS. Results along the same lines were obtained using similar control-flow
metrics collected using a different tool and Aspect-oriented programming
techniques.

One possible explanation of this situation resides in the very nature of testing in
OSS projects. There is an assumption that OSS is tested by using it in actual
settings. This point is backed in part by Raymond’s argument that “Given
enough eyeballs, all bugs are shallow'' [Raymond 2001]. However, the negation
of the first part of this argument may imply that bugs will go under whenever
enough eye balls are missing.

Our assessment of the test suites of OSS projects indicates that more
systematic testing is needed. Other evidence is given by our study of Busybox.
The augmentation of its test suite with acceptance tests and the use of
regression testing caused the software to fail and revealed three new errors.
One way to overcome this situation may be to assess the code of the OSS
while it is in use by regular users and to register this use as test cases.
Continuous [Saff and Ernst 2004] and evolutionary [Santelices, et al. 2008]
testing are techniques that may help to achieve such goal and should be
investigated.

The evidences obtained with the assessments described in this document
suggest that the software testing process in many OSS projects is not mature
enough. To achieve a systematic evaluation of the OSS testing process and to
provide a program to improve it, the Open-source Software Testing Maturity
Model (OSS-TMM) was proposed.

OSS-TMM provides guidance to identify the “Best Testing Process” (BTP)
tailored to the application of the OSS and to assess its “Available Testing
Process” (ATP). The compliance of the ATP with respect to the BTP gives the
maturity level of the testing process. OSS-TMM was utilized to analyze in detail

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 69 of 132

two real-life projects, namely, BusyBox and Apache HTTP. In addition, four
more representative OSS projects were assessed with OSS-TMM in order to
correlate their maturity levels with their bug rates to comprehend whether a
higher maturity of the testing process directly means a higher product quality.
OSS-TMM can be easily applied either to small or to large OSS projects, but the
correlation between the level of maturity and bug rates was verified in part.

However, an immature OSS project may have a low bug rate (number of bugs
divided by the product size in KLOC) because of its limited number of features.
As shown in the BusyBox study the current test suite was unable to reveal three
errors only revealed by the improvement of the testing process. Thus the
current bug rate was low due to the testing process immaturity. OSS-TMM
makes this lack of maturity explicit.

The code coverage might have a role in fine-tuning the correlation between the
maturity levels of an OSS project and its perceived trustworthiness. A low bug
rate may be an inadequate quality metric for OSS projects with immature testing
process and with low coverage test suites.

Our assessment of the OSS testing documentation revealed a disturbing
situation: Low effort is directed in OSS projects towards developing testing
documentation. One possible explanation is because documentation (and
testing documentation in particular) is perceived as an unrewarding and less
reputable activity in OSS communities. A direct implication is that one (a
software company, a developer or an end-user) does not have ways to assess
how testing was conducted and, as result, the OSS trustworthiness.

In this document, the T-DOC framework is introduced to address some of the
issues associated to testing documentation: (1) T-DOC introduces a set of new
tags similar to Java Doc tags to be included in testing code that will be used to
generate automatic documentation; (2) T-DOC analyses the source code to
suggest integration and regression tests; (3) T-DOC supports archiving of
testing documents in central repositories. We believe T-DOC will have a
beneficial impact in testing of OSS. Not only by providing mechanisms to
automatic creation and archival of testing documentation but also by guiding the
testing activity. Our assessments (e.g., the BusyBox study) indicate that
integration and regression testing have a pivotal role in improving the OSS
testing activity and as a consequence in the OSS trustworthiness.

The T-DOC development is still under way and should continue during the next
steps of Working Package 5.4. Nevertheless, an example (OSS RealEstate
Java) was presented in this document to show the applicability and real benefits
of T-DOC.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 70 of 132

REFERENCES

[1] AJDT: AspectJ Development Tools. Web published: www.eclipse.org/ajdt/.
Accessed: March 2010.

[2] Arkin, B., S. Stender, and G. McGraw. "Software penetration testing." IEEE
Security and Privacy, 2005.

[3] Arisholm, E., L. C. Briand, and A. Foyen. Dynamic coupling measurement for
object-oriented software. IEEE Trans. Software Eng., 30(8):491-506, 2004.

[4] Beizer, B. Software Testing Techniques. Van Nostrand Reinhold Company,
1990.

[5] Beydeda, S. "Research in testing COTS components -- built-in testing
approaches." Proceedings of the ACM/IEEE International Conference on
Computer Systems and Applications (AICCSA). IEEE Computer Society Press,
2005. 101-104.

[6] Budd, T. A., R. A. DeMillo, R. J. Lipton, and F. G. Sayward. "Theoretical and
Empirical Studies on Using Program Mutation to Test the Functional
Correctness of Programs." 7th ACM Symposium on Principles of Programming
Languages. New York: ACM, 1980. 220–233.

[7] Burnstein, I., T. Suwanassart, and R. Carlson. "Developing a Testing
Maturity Model for software test process evaluation and improvement." IEEE
International Test Conference (ITC). New York: IEEE Computer Society Press,
1996. 581--589.

[8] Cornett, S. "Minimum Acceptable Code Coverage." 2009.
http://www.bullseye.com/minimum.html (accessed June 30, 2009).

[9] Dannenberg, R. B., and G. W. Ernst. "Formal program verification using
symbolic execution." IEEE Transactions on Software Engineering, 1982.

[10] Duijnhouwer, F., and C. Widdows. Open Source Maturity Model. 2003.
www.osspartner.com (accessed January 31, 2009).

[11] EclEmma Eclipse Plugin. Web published: www.eclemma.org. Accessed:
March 2010.

[12] Eclipse. Eclipse Test & Performance Tools Platform Project. 2009.
www.eclipse.org/tptp/ (accessed June 30, 2009).

[13] Emam, K. E. Spice: The Theory and Practice of Software Process
Improvement and Capability dEtermination. New York: IEEE Computer Society
Press, 1997.

[14] Ericson, T., A. Subotic, and S. Ursing. "TIM - a Test Improvement Model."
International Journal on Software Testing, Verification and Reliability 7 (4),
1997: 229--246.

[15] Ernst, M. D., J. Cockrell, W. G. Griswold, and D. Notkin. "Dynamically
discovering likely program invariants to support program evolution." IEEE
Transactions on Software Engineering, 2001.

[16] Frankl, P. G., and O. Iakounenko. "Further Empirical Studies of Test
QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 71 of 132

Effictiveness." Proceedings of the ACM SIGSOFT Foundations of Software
Engineering Conference. 1998.

[17] Frankl, P., and S. Weiss. "An experimental comparison of the effectiveness
of branch testing and data flow testing." IEEE Transaction on Software
Engineering (19):8, 1993: 774-787.

[18] Herbsleb, J., D. Zubrow, D. Goldenson, W. Hayes, and M. Paulk. "Software
quality and the Capability Maturity Model." Communications of the ACM 40 (6) ,
1997: 30--40.

[19] Ho, H., S. Elbaum, and G. Rothermel. "Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and its Potential
Impact." Empirical Software Engineering (10), 2005: 405–435.

[20] Howard, M. "A process for performing security code reviews." IEEE
Security and Privacy, 2006, 4 ed.

[21] Hutchins, M., H. Foster, T. Goradia, and T. Ostrand. "Experiments on the
Effectiveness of Dataflow- and Control flow-Based Test Adequacy Criteria."
Proceedings of the 16th International Conference on Software Engineering.
Sorento, Italy: IEEE Computer Society Press, 1994. 191-200.

[22] IEEE. IEEE Standard for Software Unit Testing. ANSI/IEEE Std 1008-1987,
New York: IEEE Computer Society Press, 1987.

[23] ISO1. Information technology - software product evaluation - part 1:
General overview. ISO/IEC 14598-1, International Organization for
Standardization, 2001.

[24] ISO2. Information technology process assessment - part 1: Concepts and
vocabulary. ISO/IEC 15504-1, International Organization for Standardization,
2004.

[25] ISO3. Software engineering - product quality - part 1: Quality model.
ISO/IEC 9126-1, International Organization for Standardization, 2001.

[26] King, G., Y. Wang, and H. Wickburg. "A Method for Built-in Tests in
Component-based Software Maintenance." Proceedings of the IEEE European
Conference on Software Maintenance and Reengineering (CSMR). IEEE
Computer Society Press, 1999. 186--192.

[27] Koomen, T., and M. Pol. Test Process Improvement: a practical step-by-
step guide to structured testing. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1999.

[28] Maldonado, J. C. Potential-uses criteria: A contribution to the structural. Ph.
D Thesis. Campinas, SP, Brazil: State University of Campinas, 1991.

[29] Mao, C., Y. Lu, and J. Zhang. "Regression testing for component-based
software via built-in test design." Proceedings of the ACM Symposium on
Applied Computing (SAC). 2007. 1416--1421.

[30] Mockus, A., R. T. Fielding, and J. Herbsleb. "A case study of OSS
development: the apache server." Proceedings of the International Conference
on Software Engineering (ICSE). 2000. 263--272.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 72 of 132

[31] Morell, L. J. "A theory of fault-based testing." IEEE Transactions on
Software Engineering (TSE) 16 (8), 1990: 844--857.

[32] Myers, Glenford J. The Art of Software Testing. Wiley, 2004.

[33] NCSU. RealEstate Example. 2009.
http://agile.csc.ncsu.edu/SEMaterials/realestate/ (accessed August 2009, 1).

[34] O'Reilly, T. "Lessons from Open-Source Software development."
Communications of the ACM 42 (4).

[35] Orso, A., M. J. Harrold, D. S. Rosenblum, G. Rothermel, M. L. Soffa, and H.
Do. "Using Component Metacontent to Support the Regression Testing of
Component-Based Software." Proceedings of the IEEE International
Conference on Software Manintenance (ICSM). IEEE Computer Press, 2001.
716--725.

[36] Ostrand, T. J., and M. J. Balcer. "The category-partition method for
specifying and generating functional tests." Communications of the ACM 31 (6),
1988: 676--686.

[37] Pezzè, M., and M. Young. Software Testing And Analysis. Process,
Principles, and Techniques. Wiley, 2007.

[38] Pfleeger, S. L. Software Engineering: Theory and Practice. Prentice-Hall,
2009.

[39] Pretschner, A., et al. "One evaluation of model-based testing and its
automation." Proceedings of the 27th International Conference on Software
Engineering (ICSE). New York: IEEE Computer Society Press, 2005. 392--401.

[40] Qualipso. Definition of standard test approaches, test suites, and
benchmarks of Open Source Software. February 25, 2009.
http://www.qualipso.eu/node/129 (accessed July 24, 2009).

[41] QualiPSo1. How European software industry perceives OSS
trustworthiness and what are the specific criteria to establish trust in OSS. 2009.
http://www.qualipso.eu/node/45 (accessed June 30, 2009).

[42] QualiPSo2. Analysis of relevant open source projects. 2009.
http://www.qualipso.eu/node/84 (accessed June 30, 2009).

[43] Rapps, S., and E. J. Weyuker. "Selecting software test data using data
flow." Transaction on Software Engineering, vol. 11, no. 4, 1985: 367--375.

[44] Raymond, E. S. The Cathedral and the Bazaar. O'Reilly Media, 2001.

[45] RTCA. RTCA Software Considerations in Airborne Systems and
Equipment Certification Radio Technical Commission for Aeronautics.
RTCA/DO-178B , RTCA, 1992.

[46] Saff, D., and M. D. Ernst. "An experimental evaluation of continuous testing
during development." Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA). Boston, MA, 2004. 76--85.

[47] Santelices, R. A., P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.
Harrold. "Test-suite augmentation for evolving software." IEEE/ACM
International Conference on Automated Software Engineering (ASE). 2008.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 73 of 132

218--227.

[48] Sinha, S., and M. J. Harrold. "Analysis of programs with exception-
handling." ICSM'98 -- International Conference on Software. Bethesda, 1998.
348--357.

[49] Suliman, D., et al. "The MORABIT Approach to Runtime Component
Testing." Proceedings of the International Computer Software and Applications
Conference (COMPSAC). IEEE Computer Society Press, 2006. 171--176.

[50] Taibi, D., L. Lavazza, and S. Morasca. "OpenBQR: a framework for the
assessment of OSS." International Journal on Open Source Development,
Adoption and Innovation, 2007: 173--186.

[51] Tosi, Davide, Davide Taibi, and Sandro Morasca. "Improving the Testing
Process of Open Source Software Systems." Journal of Software and Systems,
2009: to appear.

[52] Vincenzi, A. M. R., J. C. Maldonado, W. E. Wong, and M. E. Delamaro.
"Coverage Testing of Java Programs and Components." Journal of Science of
Computer Programming, vol. 56, 2005: 211-230.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 74 of 132

APPENDIX A – OSS-TMM CHECKLIST

The appendix is presented as a checklist where each issue is represented as a
set of questions. Each question stresses a specific sub-issue that can (or
cannot) characterize the OSS project under concern. Each question is
annotated with a set of predefined answers and remarks about testing
guidelines. Questions, answers, and guidelines are formulated to limit
subjectivity.

I1 – Visibility

I1.1 Is the source code available via Versioning Systems?

 a1: yes, the whole project is managed via SVN/CVS

 a2: only some features are managed via SVN/CVS

 a3: no, the project is not managed via SVN/CVS

 I1.2 Is the project structured in folders containing sources, binaries, libraries,
docs a1: yes, the whole project is well structured

 a2: the project is not completely structured

 a3: no, the project is not structured

 I1.3 Is information about releases (date, number, change log) visible?

 a1: yes, all the info are provided

 a2: only some info are provided

 a3: no, no info is provided

 I1.4 Is information about code revisions (author, date, number, description)
visible?

 a1: yes, all the info are provided

 a2: only some info are provided

 a3: no, no info is provided

 I1.5 Are security issues meaningful for the product?

 a1: yes, private data are manipulated (bank accounts)

 a2: only sensible data are manipulated (name, surname)

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 75 of 132

 a3: no, no data are implicitly or explicitly manipulated

 I1.6 Are the scripts of the test cases open source?

 a1: yes, all the scripts are open source to the community

 a2: only some scripts are open source

 a3: no, no scripts are open source to the community

 I1.7 Is the source code released under several OSI licenses (see
www.opensource.org/licenses/ for an exhaustive list of licenses
approved by the Open Source Initiative (OSI))?

 a1: yes, popular licenses are used

 a2: not the whole code is released under popular licenses

 a3: no, non popular licenses are used

 I1.8 Are log files about system executions available?

 a1: yes, log files are available

 a2: no, log files are not available

I2 - System Analysis and Product Design Activities

I2.1 Is a project plan/roadmap available?

 a1: yes, the project plan/roadmap is available

 a2: no, the project plan/roadmap is not available

I2.2 Is a risk analysis available?

 a1: yes, the risk analysis is available

 a2: no, the risk analysis is not available

I2.3 Is a requirements analysis available?

 a1: yes, the requirements analysis is available

 a2: no, the requirements analysis is not available

I2.4 Is a goal analysis available?

 a1: yes, the goal analysis is available

 a2: no, the goal analysis is not available
QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 76 of 132

I2.5 Are system designs available (UML or other notations)?

 a1: yes, use case, class and sequence diagrams are available

 a2: partially, only some diagrams are available

 a3: no, system designs are not available

I2.6 Are standard protocols or patterns identified?

 a1: yes, standard protocols/patterns are identified

 a2: no, standard protocols/patterns are not identified

I2.7 Are coding standards and conventions identified?

 a1: yes, coding standards are identified

 a2: no, coding standards are not identified

I2.8 Are SLAs or performance requirements meaningful?

 a1: yes, real-time constraints

 a2: normal constraints (memory, bandwidth, latency)

 a3: no, no constraints are implicitly or explicitly visible

I2.9 Does the system follow a specific architectural style (e.g., SOA, peer-to-
peer, etc)?

 a1: yes, the system follows a specific architecture

 a2: no, the system does not follow a specific architecture

I2.10 Is the system developed with a GUI?

 a1: yes, the system has a GUI

 a2: no, the system does not have a GUI

I2.11 Does the product use external libraries/plugins?

 a1: yes, the product uses external libraries/plugins

 a2: no, the product does not use the external libraries/plugins

I3 - Development Process

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 77 of 132

I3.1 Is a specific development process used (e.g., waterfall, XP, continuous
building)?

 a1: yes, a specific development process is followed

 a2: no, a specific development process is not followed

I3.2 Are developers/contributors structured in teams?

 a1: yes, different teams exist

 a2: no, developers are unstructured

I3.3 Does the system provide a sand box environment?

 a1: yes, a sandbox environment is available

 a2: no, a sandbox environment is not available

I3.4 Is a specific IDE used/recommended?

 a1: yes, a specific IDE is used/recommended

 a2: no, a specific IDE is not used/recommended

I3.5 Is a testing platform used/recommended?

 a1: yes, a specific testing platform is used/recommended

 a2: no, a specific testing platform is not used/recommended

I3.6 Is a bug tracking system available?

 a1: yes, the bug tracking system is available

 a2: no, the bug tracking system is not available

I4 - System Growth and Community Creativity

I4.1 Is the number of code changes per release >500?

 a1: yes, the number of code changes is >500

 a2: no, the number of code changes is <=500

I4.2 Is the number of developers/contributors >100? (small community size <10;
medium size <100; big size >100)

 a1: yes, the number of developers/contributors is >100

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 78 of 132

 a2: no, the number of developers/contributors is <=100

I4.3 Does the system have different releases/system's updates?

 a1: yes, the number of releases/updates is provided

 a2: no, the number of releases/updates is not provided

I4.4 Is the number of open bugs/fixed bugs/... available?

 a1: yes, statistics about bugs are provided

 a2: no, statistics about bugs are not provided

I4.5 Is the frequency of changes/updates/bug time solving recognizable? (to
evaluate whether the project is still alive)

 a1: yes, the frequency of code changes is recognizable

 a2: no, the frequency of code changes is not recognizable

I5 - Documentation and Dissemination

I5.1 Is a system-level documentation available?

 a1: yes, the system-level documentation is available

 a2: no, the system-level documentation is not available

I5.2 Is a library-level documentation available?

 a1: yes, the library-level documentation is available

 a2: no, the library-level documentation is not available

I5.3 Is a feature-level documentation available?

 a1: yes, the feature-level documentation is available

 a2: no, the feature-level documentation is not available

I5.4 Is a user manual available?

 a1: yes, the user manual is available

 a2: no, the user manual is not available

I5.5 Are bugs reports available?

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 79 of 132

 a1: yes, bug reports are available

 a2: no, bug reports are not available

I5.6 Is code documentation available (javadoc, etc)?

 a1: yes, the code documentation is available

 a2: no, the code documentation is available

I5.7 Are documents disseminated via unstructured channels (mailing lists,
forums, etc)?

 a1: yes, docs are disseminated via unstructured channels

 a2: no, docs are not disseminated via unstructured channels

I5.8 Are Installation requirements documented?

 a1: yes, installation requirements are available

 a2: no, installation requirements are not available

I5.9 Are test-plan/test-design/test-results documents available?

 a1: yes, documentation about testing is available

 a2: no, documentation about testing is not available

Overall Testing Remarks

I1.1 to I1.4 are TRUE: unit testing, integration testing, and regression testing
activities are facilitated

I1.5 and I1.6 are TRUE: security testing (formal testing for the functions that
manipulate private/sensible data, penetration tests, dependencies tests, risk-
based security tests) is suggested

I1.7 is TRUE: check the compatibility among the different licenses adopted by
the project

I1.8 is TRUE: dynamic analysis techniques are applicable

I2.1 to I2.4 are TRUE: exploit requirements to design oracles and test cases for
black box testing activities (such as category partition, catalogs, hw/sw

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 80 of 132

requirements testing, acceptance testing)

I2.5 is TRUE: exploit models to perform model-based testing

I2.6 is TRUE: conformance testing to verify the protocol behaviour

I2.7 is TRUE: style check and inspection to verify the conventions

I2.8 is TRUE: apply performance testing (such as load testing, stress testing,
endurance testing)

I2.9 is TRUE: select the testing techniques specialized for the chosen
architectural style (for example, service-oriented architectures prefer on-line
testing techniques)

I2.10 is TRUE: apply capture\&replay and usability testing

I2.11 is TRUE: check compliance through versioning compatibility checks and
installation testing activities

I3.1 is TRUE: verify whether the testing process is in line with the chosen
development process

I3.2 is FALSE and I3.3 is TRUE: increase the integration and regression testing
activities and use the sand box as the testing environment

I3.4 is TRUE: make the most of the testing potentialities offered by the chosen
IDE

I3.5 is FALSE: select a testing framework to support and automatize the testing
process

I3.6 is TRUE: apply fault-based testing techniques

I4: proportionally to the size of the community and the vitality of the project,
improve: the integration and regression testing activity; the testing automation;
the sharing of testing knowledge to increase the reusability of test suites; the

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 81 of 132

documentation of test-strategy/tests-results; the monitoring of testing activities

I5.1 to I5.8 are TRUE: exploit the documentation to simplify acceptance/system
testing, usability testing, installation testing

I5.9 is FALSE: provide testing documentation through "test management tools"
(such as TestLink, qaManager, etc.) that automatize/simplify the generation of
reports

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 82 of 132

APPENDIX B – MACXIM T-DOC DOCUMENTATION

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD org.uninsubria.macxim.mw.parser

Class ApplicationLevelMetricsTest
java.lang.Object

org.uninsubria.macxim.mw.parser.ApplicationLevelMetricsTest
public class ApplicationLevelMetricsTest extends java.lang.Object

Test cases relative to metrics with Application granularity level.

Author:
Massimiliano Bosetti, Vincenzo Pandico, Jacopo Emoroso
Version:
1.1 - 24/07/09 - 15:31

Field Summary
private java.lang.String regex

String used for catching regular expressions.
private static java.lang.String response
private stub

static org.uninsubria.macxim.ws.MacXimProxyThe stub object, entry point for Macxim processing.

Constructor Summary
ApplicationLevelMetricsTest()

Method Summary
static void init ()

Initialize the test case setting variables and executing a login to MacXim calling
the methodexecuteAllMetrics.
void testExecuteMetricsCBO()

Test try to execute the metric CBO and check the values for total, max, min, stddev,
median, avg.
void testExecuteMetricsCommentLinesPerClass()

Test try to execute the metric Comment Lines per Class and check the values for total,
max, min, std-dev, median, avg.
void testExecuteMetricsEloc()

Test try to execute the metric eLOC per Class and check the values for total, max, min,
std-dev, median, avg.
void testExecuteMetricsLCOM()

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 83 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsLCOM()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsEloc()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsCommentLinesPerClass()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsCBO()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#executeAllMetrics(boolean, java.lang.String)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#init()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#ApplicationLevelMetricsTest()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#stub
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#response
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#regex
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/ApplicationLevelMetricsTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\AllTests.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\class-use\ApplicationLevelMetricsTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

Test try to execute the metric LCOM and check the values for total, max, min, stddev,
median, avg.
void testExecuteMetricsMcCabe ()

Test try to execute the metric McCabe and check the values for total, max, min, std-dev,
median, avg.
void testExecuteMetricsNumAttributesPerClass ()

Test try to execute the metric Number of Attributes per Class and check the values for
total, max, min, std-dev, median, avg.
void testExecuteMetricsNumClasses()

Test try to execute the metric Number Classes and check the value for total.
void testExecuteMetricsNumClassesWithDefinedAttributes()

Test try to execute the metric Number of Classes with Defined Attributes and check the
value for total.
void testExecuteMetricsNumClassesWithDefinedMethods()

Test try to execute the metric Number of Classes with Defined Methods and check the
value for total.
void testExecuteMetricsNumInterfacesPerClass ()

Test try to execute the metric Number of Interfaces per Class and check the values for
total, max, min, std-dev, median, avg.
void testExecuteMetricsNumMethods()

Test try to execute the metric Number of Methods and check the value for total.
void testExecuteMetricsNumMethodsPerClass()

Test try to execute the metric Number of Methods per Class and check the values for
total, max, min, std-dev, median, avg.
void testExecuteMetricsNumMethodsPerInterface()

Test try to execute the metric Number of Methods per Interface and check the values for
total, max, min, std-dev, median, avg.
void testExecuteMetricsNumPackages ()

Test try to execute the metric Number of Packages and check the value for total.
void testExecuteMetricsNumParametersPerMethod()

Test try to execute the metric Number of Parameters per Method and check the values
for total, max, min, std-dev, median, avg.
void testExecuteMetricsRFC()

Test try to execute the metric RFC and check the values for total, max, min, stddev,
median, avg.
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

regex

private java.lang.String regex String used for catching regular expressions.

response

private static java.lang.String response

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 84 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsRFC()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsNumParametersPerMethod()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsNumPackages()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsNumMethodsPerInterface()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsNumMethodsPerClass()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsNumMethods()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsNumInterfacesPerClass()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsNumClassesWithDefinedMethods()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsNumClassesWithDefinedAttributes()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsNumClasses()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsNumAttributesPerClass()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#testExecuteMetricsMcCabe()

stub

private static org.uninsubria.macxim.ws.MacXimProxy stub The stub object,
entry point for Macxim processing.

Constructor Detail

ApplicationLevelMetricsTest

public ApplicationLevelMetricsTest()

Method Detail

init

public static void init()
throws java.lang.Exception

Initialize the test case setting variables and executing a login to MacXim calling the
method executeAllMetrics. It is executed just one time at the beginning of test case.
Throws:
java.lang.Exception - exception

testExecuteMetricsCBO

public void testExecuteMetricsCBO()

Test try to execute the metric CBO and check the values for total, max, min, std-dev,
median, avg. See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0
Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsCommentLinesPerClass

public void testExecuteMetricsCommentLinesPerClass()

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 85 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#executeAllMetrics(boolean, java.lang.String)

Test try to execute the metric Comment Lines per Class and check the values for total,
max, min, std-dev, median, avg.
See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0
Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsEloc

public void testExecuteMetricsEloc()

Test try to execute the metric eLOC per Class and check the values for total, max, min,
std-dev, median, avg.
See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0
Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsLCOM

public void testExecuteMetricsLCOM()

Test try to execute the metric LCOM and check the values for total, max, min, std-dev,
median, avg.
See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 86 of 132

Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0
Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsMcCabe

public void testExecuteMetricsMcCabe()

Test try to execute the metric McCabe and check the values for total, max, min, std-dev,
median, avg.
See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:

V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0 Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsNumAttributesPerClass

public void testExecuteMetricsNumAttributesPerClass()

Test try to execute the metric Number of Attributes per Class and check the values for
total, max, min, std-dev, median, avg.
See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 87 of 132

Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0
Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsNumClasses

public void testExecuteMetricsNumClasses()

Test try to execute the metric Number Classes and check the value for total. See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:

Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0 Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsNumClassesWithDefinedAttributes

public void testExecuteMetricsNumClassesWithDefinedAttributes()

Test try to execute the metric Number of Classes with Defined Attributes and check the
value for total.
See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0
Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsNumClassesWithDefinedMethods

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 88 of 132

public void testExecuteMetricsNumClassesWithDefinedMethods()

Test try to execute the metric Number of Classes with Defined Methods and check the
value for total.
See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0

Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsNumInterfacesPerClass

public void testExecuteMetricsNumInterfacesPerClass()

Test try to execute the metric Number of Interfaces per Class and check the values for
total, max, min, std-dev, median, avg.
See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0
Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsNumMethods

public void testExecuteMetricsNumMethods()

Test try to execute the metric Number of Methods and check the value for total. See
Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 89 of 132

Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0
Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsNumMethodsPerClass

public void testExecuteMetricsNumMethodsPerClass()

Test try to execute the metric Number of Methods per Class and check the values for
total, max, min, std-dev, median, avg.
See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0
Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsNumMethodsPerInterface

public void testExecuteMetricsNumMethodsPerInterface()

Test try to execute the metric Number of Methods per Interface and check the values for
total, max, min, std-dev, median, avg.
See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 90 of 132

Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0
Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsNumPackages

public void testExecuteMetricsNumPackages() Test try to execute the metric
Number of Packages and check the value for total. See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0
Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsNumParametersPerMethod

public void testExecuteMetricsNumParametersPerMethod()

Test try to execute the metric Number of Parameters per Method and check the values
for total, max, min, std-dev, median, avg.
See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0
Test Succeed If:
the values are initialized and each value is > 0

testExecuteMetricsRFC

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 91 of 132

public void testExecuteMetricsRFC() Test try to execute the metric RFC and
check the values for total, max, min, std-dev, median, avg. See Also:
java.util.regex.Pattern.matcher(CharSequence arg0)

Author:

Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:31
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the values are not initialized properly or at less one value is < 0 Test Succeed If:
the values are initialized and each value is > 0

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
org.uninsubria.macxim.mw.database.test

Class DBAdministrationTest
java.lang.Object

org.uninsubria.macxim.mw.database.test.DBAdministrationTest
public class DBAdministrationTest extends java.lang.Object

Test cases relative to database administration functionalities. Author:
Massimiliano Bosetti, Jacopo Emoroso

Constructor Summary
DBAdministrationTest()

Method Summary
void testGetDBURI()

Test try to find the correct URI used for the database binding.
void testGetPassword()

Test try to find the password for the access to database.
void testGetUsername()

Test try to find the user admin for the access to database.
static void testInitialize ()

Initialization of Test DBAdministration, that try to run database administration
functionalities.
static void testShutdown()

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 92 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#testShutdown()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#testInitialize()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#testGetUsername()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#testGetPassword()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#testGetDBURI()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#DBAdministrationTest()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/database/test/DBAdministrationTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\class-use\DBAdministrationTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/ApplicationLevelMetricsTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\AllTests.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\class-use\ApplicationLevelMetricsTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

Closing of Test DBAdministration.
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

DBAdministrationTest

public DBAdministrationTest()

Method Detail

testGetDBURI

public void testGetDBURI()

Test try to find the correct URI used for the database binding.
See Also:
org.uninsubria.macxim.mw.database.DBAdministration.getDBURI()

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the URI used for the database binding is different from "xmldb:exist:///db"
Test Succeed If:
the URI used for the database binding is "xmldb:exist:///db"

testGetPassword

public void testGetPassword()

Test try to find the password for the access to database. See Also:
org.uninsubria.macxim.mw.database.DBAdministration.getPassword()

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
Unit
Quality Attribute:

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 93 of 132

Functionality
Test Fail If:
the password max1982 doesn't exist for the access to database
Test Succeed If:
the password max1982 exist for the access to database

testGetUsername

public void testGetUsername()

Test try to find the user admin for the access to database. See Also:
org.uninsubria.macxim.mw.database.DBAdministration.getUsername()

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the user "admin" doesn't exist for the access to database
Test Succeed If:
the user "admin" exist for the access to database

testInitialize

public static void testInitialize() Initialization of Test DBAdministration,
that try to run database administration functionalities.

testShutdown

public static void testShutdown()

Closing of Test DBAdministration.
Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL:

FIELD | CONSTR | METHOD org.uninsubria.macxim.mw.database.test

Class DBQueryTest

java.lang.Object

org.uninsubria.macxim.mw.database.test.DBQueryTest
public class DBQueryTest extends java.lang.Object

Test cases relative to database query functionalities. Author:
Massimiliano Bosetti, Jacopo Emoroso

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 94 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/database/test/DBQueryTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\class-use\DBQueryTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/database/test/DBAdministrationTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\class-use\DBAdministrationTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

Field Summary

private dbq static org.uninsubria.macxim.mw.database.DBQuery

Constructor Summary

DBQueryTest()

Method Summary

static void initialize()

Initialization of Test DBQueryTest, that try to run database query functionalities.
static void shutdown ()

Closing of Test DBQueryTest.
void testExecuteQueryCode()

Test try to execute a query code with some parameters.
void testExecuteQueryString()

Test try to execute a database query without parameters.
void testExecuteQueryStringMap()

Test try to execute a database query with parameters.
void testGetQuery()

Test try to get the correct query by its name passed as parameter.
void testGetQueryList()

Test try to get the correct query list from the database.
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

dbq

private static org.uninsubria.macxim.mw.database.DBQuery dbq

Constructor Detail

DBQueryTest

public DBQueryTest()

Method Detail

initialize

public static void initialize() Initialization of Test DBQueryTest, that try to
run database query functionalities.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 95 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#testGetQueryList()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#testGetQuery()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#testExecuteQueryStringMap()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#testExecuteQueryString()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#testExecuteQueryCode()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#shutdown()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#initialize()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#DBQueryTest()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#dbq

shutdown

public static void shutdown() Closing of Test DBQueryTest.

testExecuteQueryCode

public void testExecuteQueryCode()

Test try to execute a query code with some parameters. See Also:
org.uninsubria.macxim.mw.database.DBQuery.executeQueryCode(String
queryCode, Map parameters)

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the execution of the query code doesn't return the correct result
Test Succeed If:
the execution of the query code returns the correct result

testExecuteQueryString

public void testExecuteQueryString()

Test try to execute a database query without parameters. See Also:
org.uninsubria.macxim.mw.database.DBQuery.executeQuery(String
queryName)

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the query "queryTest.xql" doesn't return the correct result
Test Succeed If:
the query "queryTest.xql" returns the correct result

testExecuteQueryStringMap

public void testExecuteQueryStringMap()

Test try to execute a database query with parameters. See Also:
org.uninsubria.macxim.mw.database.DBQuery.executeQuery(String
queryName, Map parameters)

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 96 of 132

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the query "parametersQueryTest.xql" doesn't return the correct result
Test Succeed If:
the query "parametersQueryTest.xql" returns the correct result

testGetQuery

public void testGetQuery() Test try to get the correct query by its name passed as
parameter. See Also:
org.uninsubria.macxim.mw.database.DBQuery.getQuery(String queryName)

Author:

Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the body of query returned isn't equals to "queryTest.xql" Test Succeed If:
the body of query returned is equals to "queryTest.xql"

testGetQueryList

public void testGetQueryList()

Test try to get the correct query list from the database. See Also:
org.uninsubria.macxim.mw.database.DBQuery.getQueryList()

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the query list doesn't contain the correct elements
Test Succeed If:
the query list contains the correct elements

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 97 of 132

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL:
FIELD | CONSTR | METHOD

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL:

FIELD | CONSTR | METHOD org.uninsubria.macxim.mw.database.test

Class DBUtilitiesTest

java.lang.Object

org.uninsubria.macxim.mw.database.test.DBUtilitiesTest
public class DBUtilitiesTest extends java.lang.Object Test cases relative to
database utilities.
Author:
Massimiliano Bosetti, Jacopo Emoroso

Field Summary

private
static org.xmldb.api.base.Collection testCollection

Constructor Summary

DBUtilitiesTest()

Method Summary

static void createTestCollection()
Initialization of Test DBUtilitiesTest
static void deleteTestCollection()
Closing of Test DBUtilitiesTest
void testGetCollection()
Test try to find the specified database collection into the parent collection. void

testGetDBProperty()
Test looks for a property, passed as parameter, in the file macxim.ini void
testGetStringQuery ()
Test try to get the body of the query stored into a resource void testStoreResource()
Test try to store a resource in a database collection passed as parameter
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

testCollection private static org.xmldb.api.base.Collection
testCollection

Constructor Detail

DBUtilitiesTest public DBUtilitiesTest()

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 98 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#testStoreResource()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#testGetStringQuery()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#testGetStringQuery()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#testGetDBProperty()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#testGetDBProperty()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#testGetCollection()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#deleteTestCollection()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#createTestCollection()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#DBUtilitiesTest()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#testCollection
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/database/test/DBUtilitiesTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\class-use\DBUtilitiesTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/database/test/DBQueryTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBAdministrationTest.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\class-use\DBQueryTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

Method Detail

createTestCollection
public static void createTestCollection() Initialization of Test DBUtilitiesTest

deleteTestCollection
public static void deleteTestCollection() Closing of Test DBUtilitiesTest

testGetCollection

public void testGetCollection() Test try to find the specified database collection into the
parent collection.

See Also:
org.uninsubria.macxim.mw.database.DBUtilities.getCollection(String
parentPath, String collectionName, boolean create)

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
unit
Quality Attribute:
functionality
Test Fail If:
the specified database collection isn't found
Test Succeed If:
the specified database collection is found

testGetDBProperty
public void testGetDBProperty() Test looks for a property, passed as parameter, in the file
macxim.ini
See Also:
org.uninsubria.macxim.common.utilities.FileSystemUtils.getFileConfigur
ationProperty(String section, String propertyName)

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
unit
Quality Attribute:
functionality
Test Fail If:
the property passed as parameter isn't found in the file macxim.ini
Test Succeed If:
the property passed as parameter is found in the file macxim.ini

testGetStringQuery

public void testGetStringQuery() Test try to get the body of the query stored into a
resource

See Also:

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 99 of 132

org.uninsubria.macxim.mw.database.DBUtilities.getStringQuery(Resource
query)

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
unit
Quality Attribute:
functionality
Test Fail If:
the body of the query stored in the resource "resourceTest" is different from "test resource"
Test Succeed If:
the body of the query stored in the resource "resourceTest" is equals to "test resource"

testStoreResource
public void testStoreResource() Test try to store a resource in a database collection passed
as parameter

See Also:
org.uninsubria.macxim.mw.database.DBUtilities.storeResource(String
resourcePath, String resourceName, Collection containerCollection)

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
unit
Quality Attribute:
functionality
Test Fail If:
the resource isn't stored in the database collection specified

Test Succeed If:
the resource is stored in the database collection specified
Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL:
FIELD | CONSTR | METHOD

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD org.uninsubria.macxim.mw.test

Class JUnitUtils
java.lang.Object

org.uninsubria.macxim.mw.test.JUnitUtils
public class JUnitUtils extends java.lang.Object

Constructor Summary
JUnitUtils()

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 100 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#JUnitUtils()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/test/JUnitUtils.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBUtilitiesTest.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/database/test/DBUtilitiesTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\DBQueryTest.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\class-use\DBUtilitiesTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\database\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

Method Summary
static java.lang.Object executeMethod(java.lang.Object instance,
java.lang.String name, java.lang.Object[] params)

Executes a method on an object instance.
static java.lang.Object getField(java.lang.Object instance,
java.lang.String name)

Gets the field value from an instance.
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

JUnitUtils

public JUnitUtils()

Method Detail

executeMethod

public static java.lang.Object executeMethod(java.lang.Object
instance, java.lang.String name,
java.lang.Object[] params) throws java.lang.Exception

Executes a method on an object instance. The name and parameters of the method are
specified. The method will be executed and the value of it returned, even if the method
would have private or protected access.

Throws:
java.lang.Exception

getField

public static java.lang.Object getField(java.lang.Object instance,

java.lang.String name) throws java.lang.Exception Gets the field value from
an instance. The field we wish to retrieve is specified by passing the name. The value
will be returned, even if the field would have private or protected access. Throws:
java.lang.Exception

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD org.uninsubria.macxim.mw.parser

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 101 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/LoginLogoutTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/test/JUnitUtils.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\class-use\JUnitUtils.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#getField(java.lang.Object, java.lang.String)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\test\JUnitUtils.html#executeMethod(java.lang.Object, java.lang.String, java.lang.Object[])

Class LoginLogoutTest
java.lang.Object

org.uninsubria.macxim.mw.parser.LoginLogoutTest
public class LoginLogoutTest extends java.lang.Object

Test cases relative to login and logout operations to Macxim.

Author:
Jacopo Emoroso
Version:
2.0 - 24/07/09 - 15:31

Constructor Summary
LoginLogoutTest()

Method Summary
void testLoginBadFormatted()

Test check if the Login to Macxim return a correct sToken sending a bad formatted xml
message, parsing the request in WebService mode or Middleware mode.
void testLoginNo()

Test check if the Login to Macxim return a correct sToken sending an incorrect xml
message (username: "macxim", password: "macximxx"), parsing the request in
WebService mode or Middleware mode.

void testLoginOk()

Test check if the Login to Macxim return a correct sToken sending a correct xml
message (username: "macxim", password: "macxim"), parsing the request in
WebService mode or Middleware mode.

void testLogoutBadSessionToken()

Test try to perform the Logout to Macxim sending an incorrect xml message with a
wrong session token, parsing the request in WebService mode or Middleware mode.
void testLogoutOk()

Test try to perform the Logout to Macxim sending a correct xml message, parsing the
request in WebService mode or Middleware mode.
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

LoginLogoutTest
QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 102 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#testLogoutOk()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#testLogoutBadSessionToken()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#testLoginOk()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#testLoginNo()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#testLoginBadFormatted()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#LoginLogoutTest()

public LoginLogoutTest()

Method Detail

testLoginBadFormatted

public void testLoginBadFormatted()

Test check if the Login to Macxim return a correct sToken sending a bad formatted xml
message, parsing the request in WebService mode or Middleware mode.
See Also:
testInit.login(boolean isWebService, String username, String password)

Author:
Jacopo Emoroso
Version:
V2.0 - 22/09/09 - 16:00
Test Scope:
Acceptance
Quality Attribute:
Security
Test Fail If:
sToken isn't equal to -1, parsing the request in WebService mode, sToken isn't equal to
-1, parsing the request in Middleware mode
Test Succeed If:
sToken is equal to -1, parsing the request in WebService mode, sToken is equal to -1,
parsing the request in Middleware mode

testLoginNo

public void testLoginNo()

Test check if the Login to Macxim return a correct sToken sending an incorrect xml
message (username: "macxim", password: "macximxx"), parsing the request in
WebService mode or Middleware mode.

See Also:
testInit.login(boolean isWebService, String username, String password)

Author:
Jacopo Emoroso
Version:
V2.0 - 22/09/09 - 16:00
Test Scope:
Acceptance
Quality Attribute:
Security
Test Fail If:

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 103 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#login(boolean, java.lang.String, java.lang.String)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#login(boolean, java.lang.String, java.lang.String)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#login(boolean, java.lang.String, java.lang.String)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#login(boolean, java.lang.String, java.lang.String)

sToken isn't equal to -1, parsing the request in WebService mode, sToken isn't equal to
-1, parsing the request in Middleware mode
Test Succeed If:
sToken is equal to -1, parsing the request in WebService mode, sToken is equal to -1,
parsing the request in Middleware mode

testLoginOk

public void testLoginOk()

Test check if the Login to Macxim return a correct sToken sending a correct xml
message (username: "macxim", password: "macxim"), parsing the request in
WebService mode or Middleware mode.

See Also:
testInit.login(boolean isWebService, String username, String password)

Author:
Jacopo Emoroso
Version:
V2.0 - 22/09/09 - 16:00
Test Scope:
Acceptance
Quality Attribute:
Security
Test Fail If:
sToken isn't greater than 0, parsing the request in WebService mode, sToken isn't
greater than 0, parsing the request in Middleware mode
Test Succeed If:
sToken is greater than 0, parsing the request in WebService mode, sToken is greater
than 0, parsing the request in Middleware mode

testLogoutBadSessionToken

public void testLogoutBadSessionToken()

Test try to perform the Logout to Macxim sending an incorrect xml message with a
wrong session token, parsing the request in WebService mode or Middleware mode.
See Also:

testInit.logout(boolean isWebService, long sessionToken)

Author:
Jacopo Emoroso
Version:
V2.0 - 22/09/09 - 16:00
Test Scope:
Acceptance

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 104 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#logout(boolean, long)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#login(boolean, java.lang.String, java.lang.String)

Quality Attribute:
Security
Test Fail If:
testInit.logout(sToken) return true, parsing the request in WebService mode,
testInit.logout(sToken) return true, parsing the request in Middleware mode
Test Succeed If:
testInit.logout(sToken) return false, parsing the request in WebService mode,
testInit.logout(sToken) return false, parsing the request in Middleware mode

testLogoutOk

public void testLogoutOk()

Test try to perform the Logout to Macxim sending a correct xml message, parsing the
request in WebService mode or Middleware mode.
See Also:
testInit.logout(boolean isWebService, long sessionToken)

Author:
Jacopo Emoroso
Version:
V2.0 - 22/09/09 - 16:00
Test Scope:
Acceptance
Quality Attribute:
Security
Test Fail If:
testInit.logout(sToken) return false, parsing the request in WebService mode,
testInit.logout(sToken) return false, parsing the request in Middleware mode
Test Succeed If:
testInit.logout(sToken) return true, parsing the request in WebService mode,
testInit.logout(sToken) return true, parsing the request in Middleware mode

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL:

FIELD | CONSTR | METHOD org.uninsubria.macxim.mw.parser

Class ProjectManagementTest

java.lang.Object

org.uninsubria.macxim.mw.parser.ProjectManagementTest
public class ProjectManagementTest extends java.lang.Object

Test cases relative to Macxim project management operations.

Author:
Massimiliano Bosetti, Vincenzo Pandico, Jacopo Emoroso
Version:

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 105 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/ProjectManagementTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\class-use\ProjectManagementTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/LoginLogoutTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ApplicationLevelMetricsTest.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\class-use\LoginLogoutTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#logout(boolean, long)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#logout(boolean, long)

V1.1 - 22/09/09 - 16:00

Constructor Summary

ProjectManagementTest()

Method Summary

void testGetProjectMetadata()

Test check if the metadata of a project uploaded obtained with the method
getProjectMetadata return the correct xml response, parsing the request in
WebService mode or Middleware mode.

void testGetProjectsList ()

Test check if the list of projects uploaded obtained with the methodgetProjectsList
return the correct xml response, parsing the request in WebService mode or Middleware
mode.
void testRemoveProject()

Test check if the delete of a project withremoveProject method return the correct xml
response, parsing the request in WebService mode or Middleware mode.
void testUpdateProjectMetadata()

Test check if the upload of metadata of a project withuploadProjectMetadata method
return the correct xml response, parsing the request in WebService mode or Middleware
mode.
void testUploadProject()

Test check if the upload of a project withuploadProject method return the correct xml
response, parsing the request in WebService mode or Middleware mode.
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

ProjectManagementTest

public ProjectManagementTest()

Method Detail

testGetProjectMetadata

public void testGetProjectMetadata()

Test check if the metadata of a project uploaded obtained with the
methodgetProjectMetadata return the correct xml response, parsing the request in
WebService mode or Middleware mode. See Also:
org.uninsubria.macxim.mw.parser.testInit.getProjectMetadata(boolean
isWebService, String projectId)

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 106 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#getProjectMetadata(boolean, java.lang.String)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#testUploadProject()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#testUpdateProjectMetadata()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#removeProject(boolean, java.lang.String)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#testRemoveProject()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#getProjectsList(boolean)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#testGetProjectsList()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#getProjectMetadata(boolean, java.lang.String)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#getProjectMetadata(boolean, java.lang.String)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#testGetProjectMetadata()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#ProjectManagementTest()

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the response is an incorrect xml message, parsing the request in WebService mode, the
response is an incorrect xml message, parsing the request in Middleware mode
Test Succeed If:
the response is a correct xml message, parsing the request in WebService mode, the
response is a correct xml message, parsing the request in Middleware mode

testGetProjectsList

public void testGetProjectsList()

Test check if the list of projects uploaded obtained with the methodgetProjectsList
return the correct xml response, parsing the request in WebService mode or Middleware
mode. See Also:
org.uninsubria.macxim.mw.parser.testInit.getProjectsList(boolean
isWebService)

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:

the response isn't a list with one project or idProject isn't 1, parsing the request in
WebService mode, the response isn't a list with one project or idProject isn't 1, parsing
the request in Middleware mode

Test Succeed If:
the response is a list with one project and idProject is 1, parsing the request in
WebService mode, the response is a list with one project and idProject is 1, parsing the
request in Middleware mode

testRemoveProject

public void testRemoveProject()

Test check if the delete of a project withremoveProject method return the correct xml
response, parsing the request in WebService mode or Middleware mode.
See Also:

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 107 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#removeProject(boolean, java.lang.String)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#removeProject(boolean, java.lang.String)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html#getProjectsList(boolean)

org.uninsubria.macxim.mw.parser.testInit.removeProject(boolean
isWebService, String projectId)

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the response is an incorrect xml message, parsing the request in WebService mode, the
response is an incorrect xml message, parsing the request in Middleware mode
Test Succeed If:
the response is a correct xml message, parsing the request in WebService mode, the
response is a correct xml message, parsing the request in Middleware mode

testUpdateProjectMetadata

public void testUpdateProjectMetadata()

Test check if the upload of metadata of a project withuploadProjectMetadata method
return the correct xml response, parsing the request in WebService mode or Middleware
mode. See Also:
org.uninsubria.macxim.mw.parser.testInit.updateProjectMetadata(boolean
isWebService, String projectId, Map metadata)

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the response is an incorrect xml message, parsing the request in WebService mode, the
response is an incorrect xml message, parsing the request in Middleware mode
Test Succeed If:
the response is a correct xml message, parsing the request in WebService mode, the
response is a correct xml message, parsing the request in Middleware mode

testUploadProject

public void testUploadProject()
throws org.xmldb.api.base.XMLDBException, java.io.IOException

Test check if the upload of a project withuploadProject method return the correct xml
response, parsing the request in WebService mode or Middleware mode.
Throws:
org.xmldb.api.base.XMLDBException

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 108 of 132

java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.testInit.uploadProject(boolean
isWebService, String projectName, Map metadata, Repository repository)

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Acceptance
Quality Attribute:
Functionality
Test Fail If:
the response is an incorrect xml message, parsing the request in WebService mode, the
response is an incorrect xml message, parsing the request in Middleware mode
Test Succeed If:
the response is a correct xml message, parsing the request in WebService mode, the
response is a correct xml message, parsing the request in Middleware mode

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL:
FIELD | CONSTR | METHOD

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
org.uninsubria.macxim.mw.parser.java.test

Class TestCBO
java.lang.Object

org.uninsubria.macxim.mw.parser.java.test.TestCBO
public class TestCBO extends java.lang.Object

Test cases relative to Macxim CBO metric. Author:
Vincenzo Pandico, Jacopo Emoroso

Nested Class Summary
class TestCBO.myASTVisitor

Provide ASTVisitor for thetestCalculateCBO() method.

Field Summary
(packageCBOvalueprivate)

int

Constructor Summary

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 109 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#CBOvalue
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#testCalculateCBO()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#nested_class_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/java/test/TestCBO.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\ProjectManagementTest.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/ProjectManagementTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\testInit.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\LoginLogoutTest.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\class-use\ProjectManagementTest.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

TestCBO()

Method Summary
void testCalculateCBO()

Test try to calculate CBO metric on source code of the file JavaSpaceJG.java .
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

CBOvalue

int CBOvalue

Constructor Detail

TestCBO

public TestCBO()

Method Detail

testCalculateCBO

public void testCalculateCBO()
throws java.io.IOException

Test try to calculate CBO metric on source code of the file JavaSpaceJG.java . Throws:
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.CBO.calculateCBO(ASTNode
compilationUnitNode, List objectInProject)

Author:
Jacopo Emoroso
Version:
V1.2 - 23/10/09 - 12:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the value of CBO metric on source files is different from 7
Test Succeed If:

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 110 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#testCalculateCBO()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#TestCBO()

the value of CBO metric on source files is equal to 7

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
org.uninsubria.macxim.mw.parser.java.test

Class TestJavaAbstractSyntaxTreeParser
java.lang.Object

org.uninsubria.macxim.mw.parser.java.test.TestJavaAbstractSyntaxTree
Parser
public class TestJavaAbstractSyntaxTreeParser extends java.lang.Object

Test cases relative to javaAbstractSyntaxTreeParser operations.
Author:
Vincenzo Pandico, Jacopo Emoroso

Field Summary
int javaFiles
int xmlFiles

Constructor Summary
TestJavaAbstractSyntaxTreeParser()

Method Summary
void fileCounter(java.lang.String projectPath)

Method that count Java files and XML files in all directories and subdirectories of a
project path passed fromtestTransform method.
void setUp()
void testTransform()

Test try to transform source code of the project testProjectJavaSpaceJG in XML AST.
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail
javaFiles

public int javaFiles

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 111 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#testTransform()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#setUp()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#testTransform()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#fileCounter(java.lang.String)
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#TestJavaAbstractSyntaxTreeParser()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#xmlFiles
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#javaFiles
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/java/test/TestJavaAbstractSyntaxTreeParser.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html#nested_class_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/java/test/TestCBO.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\class-use\TestCBO.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

xmlFiles

public int xmlFiles

Constructor Detail
TestJavaAbstractSyntaxTreeParser

public TestJavaAbstractSyntaxTreeParser()

Method Detail
fileCounter

public void fileCounter(java.lang.String projectPath) Method that count
Java files and XML files in all directories and subdirectories of a project path passed
fromtestTransform method.

setUp

public void setUp()

throws java.lang.Exception Throws:
java.lang.Exception

testTransform

public void testTransform()
throws org.eclipse.core.runtime.CoreException, java.io.IOException

Test try to transform source code of the project testProjectJavaSpaceJG in XML AST.

Throws:
org.eclipse.core.runtime.CoreException
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.JavaAbstractSyntaxTreeParser.tran
sform(String directoryProjectPath)

Author:
Jacopo Emoroso
Version:
V1.2 - 19/09/09 - 12:00

Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 112 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#testTransform()

the number of source file is not equal to 19a or after the transformation are added a
number of xml files different from 19
Test Succeed If:
the number of source file is equal to 19 and after the transformation are added 19 xml
files

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL:

FIELD | CONSTR | METHOD org.uninsubria.macxim.mw.parser.java.test

Class TestJavaSourceCodeInfo
java.lang.Object

org.uninsubria.macxim.mw.parser.java.test.TestJavaSourceCodeInfo
public class TestJavaSourceCodeInfo extends java.lang.Object

Test cases relative to javaSourceCodeInfo operations. Author:
Vincenzo Pandico, Jacopo Emoroso

Constructor Summary
TestJavaSourceCodeInfo()

Method Summary
void setUp()
void testCountBlankLines()

Test check if the lines are counted properly in the file JavaSpaceJG.java from
countBlankLines() method.
void testCountBlankLinesIntInt()

Test check if the number of lines counted from the methodcountBlankLines(int,
int), is equal to the lines in the portion of source code selected from file
JavaSpaceJG.java. void testCountCommentLines ()

Test check if the lines are counted properly in the file JavaSpaceJG.java from
countCommentLines() method.
void testCountCommentLinesIntInt()

Test check if the number of lines counted from the methodcountCommentLines(int,
int), is equal to the lines in the portion of source code selected from file
JavaSpaceJG.java. void testCountLines()
Test check if the lines are counted properly in the file JavaSpaceJG.java from
countLines() method.
void testCountLinesIntInt()

Test check if the number of lines counted from the methodcountLines(int, int), is
equal to the lines in the portion of source code selected from file JavaSpaceJG.java .
void testCountOnlyBraceLines()

Test check if the lines are counted properly in the file JavaSpaceJG.java from

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 113 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testCountOnlyBraceLines()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testCountLinesIntInt()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testCountLines()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testCountCommentLinesIntInt()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testCountCommentLines()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testCountBlankLinesIntInt()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testCountBlankLines()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#setUp()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#TestJavaSourceCodeInfo()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/java/test/TestJavaSourceCodeInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\class-use\TestJavaSourceCodeInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/java/test/TestJavaAbstractSyntaxTreeParser.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestCBO.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\class-use\TestJavaAbstractSyntaxTreeParser.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

countOnlyBraceLines() method.
void testCountOnlyBraceLinesIntInt ()

Test check if the number of lines counted from the
methodcountOnlyBraceLines(int, int), is equal to the lines in the portion of source
code selected from file JavaSpaceJG.java. void testCountOnlyCommentLines()
Test check if the lines are counted properly in the file JavaSpaceJG.java from
countOnlyCommentLines() method.
void testCountOnlyCommentLinesIntInt()

Test check if the number of lines counted from the method
countOnlyCommentLines(int, int), is equal to the lines in the portion of source
code selected from file JavaSpaceJG.java .

void testCountTag ()

Test check if the tags are counted properly in the file JavaSpaceJG.java from
countTags() method.
void testGetOnlyTagLines()

Test check if the lines are counted properly in the file JavaSpaceJG.java from
countOnlyTagLines() method.
void testGetStartEndLineMethod()

Test check if the method getStartEndLineMethod(String matchMethod) is able to
match the method passed in input with the string "receive(Message msg)" in the file
JavaSpaceJG.java and to return the correct values for the number of start line and end
line.

void testJavaSourceCodeInfo()

Run the JavaSourceCodeInfo(String path) constructor test.
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail
TestJavaSourceCodeInfo

public TestJavaSourceCodeInfo()

Method Detail
setUp

public void setUp()

throws java.lang.Exception Throws:
java.lang.Exception

testCountBlankLines

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 114 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testJavaSourceCodeInfo()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testGetStartEndLineMethod()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testGetOnlyTagLines()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testCountTag()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testCountOnlyCommentLinesIntInt()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testCountOnlyCommentLines()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#testCountOnlyBraceLinesIntInt()

public void testCountBlankLines()
throws java.io.IOException

Test check if the lines are counted properly in the file JavaSpaceJG.java from
countBlankLines() method.

Throws:
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.countBlankLine
s()

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
blank lines counted are a number different from 59
Test Succeed If:
blank lines counted are a number equal to 59

testCountBlankLinesIntInt

public void testCountBlankLinesIntInt()

throws java.io.IOException Test check if the number of lines counted from the
methodcountBlankLines(int, int), is equal to the lines in the portion of source
code selected from file JavaSpaceJG.java.

Throws:
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.countBlankLine
s(int start, int end)

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
at less one countBlankLines(int, int) returned is different from the value in the assert
clause
Test Succeed If:
all countBlankLines(int, int) returned is equal to the value in the assert clause

testCountCommentLines

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 115 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java

public void testCountCommentLines()

throws java.io.IOException Test check if the lines are counted properly in the file
JavaSpaceJG.java from countCommentLines() method.
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.countCommentLi
nes()

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
comment lines counted are a number different from 10
Test Succeed If:
comment lines counted are a number equal to 10

testCountCommentLinesIntInt

public void testCountCommentLinesIntInt()

throws java.io.IOException Test check if the number of lines counted from the
methodcountCommentLines(int, int), is equal to the lines in the portion of source
code selected from file JavaSpaceJG.java.

Throws:
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.countCommentLi
nes(int start, int end)

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
at less one countCommentLines(int, int) returned is different from the value in the assert
clause
Test Succeed If:
all countCommentLines(int, int) returned is equal to the value in the assert clause

testCountLines

public void testCountLines()

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 116 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java

throws java.io.IOException Test check if the lines are counted properly in the file
JavaSpaceJG.java fromcountLines() method.
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.countLines()

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
lines counted are a number different from 224
Test Succeed If:
lines counted are 224

testCountLinesIntInt

public void testCountLinesIntInt()

throws java.io.IOException Test check if the number of lines counted from the
methodcountLines(int, int), is equal to the lines in the portion of source code
selected from file JavaSpaceJG.java.

Throws:
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.countLines(int
start, int end)

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
at less one countLines(int, int) returned is different from the value in the assert clause
Test Succeed If:
all countLines(int, int) returned is equal to the value in the assert clause

testCountOnlyBraceLines

public void testCountOnlyBraceLines()

throws java.io.IOException Test check if the lines are counted properly in the file
JavaSpaceJG.java from countOnlyBraceLines() method.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 117 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java

Throws:
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.countOnlyBrace
Lines()

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
only brace lines counted are a number different from 37
Test Succeed If:
only brace lines counted are a number equal to 37

testCountOnlyBraceLinesIntInt

public void testCountOnlyBraceLinesIntInt()

throws java.io.IOException Test check if the number of lines counted from the
methodcountOnlyBraceLines(int, int), is equal to the lines in the portion of source
code selected from file JavaSpaceJG.java.

Throws:
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.countOnlyBrace
Lines(int start, int end)

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
at less one countOnlyBraceLines(int, int) returned is different from the value in the
assert clause
Test Succeed If:
all countOnlyBraceLines(int, int) returned is equal to the value in the assert clause

testCountOnlyCommentLines

public void testCountOnlyCommentLines()

throws java.io.IOException Test check if the lines are counted properly in the file
JavaSpaceJG.java from countOnlyCommentLines() method.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 118 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java

Throws:
java.io.IOException
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.countOnlyComme
ntLines()

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
only comment lines counted are a number different from 9, excluding inline comment
lines
Test Succeed If:
only comment lines counted are a number equal to 9, excluding inline comment lines

testCountOnlyCommentLinesIntInt

public void testCountOnlyCommentLinesIntInt()

throws java.io.IOException Test check if the number of lines counted from the
methodcountOnlyCommentLines(int, int), is equal to the lines in the portion of
source code selected from file JavaSpaceJG.java. Throws:
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.countOnlyComme
ntLines(int start, int end)

Author:
jacopo emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
unit
Quality Attribute:
functionality
Test Fail If:
at less one countOnlyCommentLines(int, int) returned is different from the value in the
assert clause, excluding inline comment lines
Test Succeed If:
all countOnlyCommentLines(int, int) returned is equal to the value in the assert clause,
excluding inline comment lines

testCountTag

public void testCountTag()

throws java.io.IOException Test check if the tags are counted properly in the file
JavaSpaceJG.java from countTags() method.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 119 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java

Throws:
java.io.IOException
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.countTags()

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
tags counted are a number different from 9
Test Succeed If:
tags counted are a number equal to 9

testGetOnlyTagLines

public void testGetOnlyTagLines()

throws java.io.IOException Test check if the lines are counted properly in the file
JavaSpaceJG.java from countOnlyTagLines() method.
Throws:
java.io.IOException

See Also:

org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.countOnlyTagLi

nes() Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit

Quality Attribute:
Functionality
Test Fail If:
only tag lines counted are a number different from 9
Test Succeed If:
only tag lines counted are a number equal to 9

testGetStartEndLineMethod

public void testGetStartEndLineMethod()
throws java.io.IOException

Test check if the method getStartEndLineMethod(String matchMethod) is able to
match the method passed in input with the string "receive(Message msg)" in the file
JavaSpaceJG.java and to return the correct values for the number of start line and end

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 120 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java

line.

Throws:
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.getStartEndLin
eMethod(String matchMethod)

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the number of start line is different from 49 or the number of end line is different from
79
Test Succeed If:
the number of start line is equal to 49 and the number of end line is equal to 79

testJavaSourceCodeInfo

public void testJavaSourceCodeInfo()

throws java.io.IOException Run the JavaSourceCodeInfo(String path) constructor
test.

Throws:
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.JavaSourceCodeInfo.JavaSourceCode
Info(String path)

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 16:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the JavaSourceCodeInfo(String path) is not initialized
Test Succeed If:
the JavaSourceCodeInfo(String path) is initialized

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL:
FIELD | CONSTR | METHOD

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 121 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#nested_class_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/java/test/TestLCOM.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/java/test/TestJavaSourceCodeInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaAbstractSyntaxTreeParser.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\class-use\TestJavaSourceCodeInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

org.uninsubria.macxim.mw.parser.java.test

Class TestLCOM
java.lang.Object

org.uninsubria.macxim.mw.parser.java.test.TestLCOM
public class TestLCOM extends java.lang.Object

Test cases relative to Macxim LCOM metric. Author:
Vincenzo Pandico, Jacopo Emoroso

Nested Class Summary
class TestLCOM.myASTVisitor

Provide ASTVisitor for thetestCalculateLCOM() method.

Field Summary
(packageLCOMprivate)

int

Constructor Summary
TestLCOM()

Method Summary
void testCalculateLCOM()

Test try to calculate LCOM metric on source code of the file JavaSpaceJG.java .
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

LCOM

int LCOM

Constructor Detail

TestLCOM

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 122 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#testCalculateLCOM()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#TestLCOM()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#LCOM
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#testCalculateLCOM()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.myASTVisitor.html

public TestLCOM()

Method Detail

testCalculateLCOM

public void testCalculateLCOM()
throws java.io.IOException

Test try to calculate LCOM metric on source code of the file JavaSpaceJG.java .
Throws:
java.io.IOException

See Also:
org.uninsubria.macxim.mw.parser.java.LCOM.calculateLCOM(ASTNode
compilationUnitNode)

Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 17:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the method calculateLCOM(ASTNode compilationUnitNode) returns a number
different from 6
Test Succeed If:
the method calculateLCOM(ASTNode compilationUnitNode) returns 6

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL:

FIELD | CONSTR | METHOD org.uninsubria.macxim.mw.parser.java.test

Class TestMcCabe

java.lang.Object

org.uninsubria.macxim.mw.parser.java.test.TestMcCabe
public class TestMcCabe extends java.lang.Object Test cases relative to Macxim
McCabe metric. Author:
Vincenzo Pandico, Jacopo Emoroso

Nested Class Summary

class TestMcCabe.myASTVisitor
Provide ASTVisitor for thetestCalculateMcCabe() method.

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 123 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#testCalculateMcCabe()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#nested_class_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/java/test/TestMcCabe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html#nested_class_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/java/test/TestLCOM.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestJavaSourceCodeInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\class-use\TestLCOM.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java

Field Summary
protected methodCCjava.util.List<java.lang.Integer>

Constructor Summary

TestMcCabe()

Method Summary
void testCalculateMcCabe()
Test try to calculate McCabe metric on source code of the file JavaSpaceJG.java .
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

methodCC protected java.util.List<java.lang.Integer> methodCC

Constructor Detail

TestMcCabe public TestMcCabe()

Method Detail

testCalculateMcCabe
public void testCalculateMcCabe()
throws java.io.IOException Test try to calculate McCabe metric on source code of the file
JavaSpaceJG.java.

Throws:
java.io.IOException
See Also:
org.uninsubria.macxim.mw.parser.java.McCabe.calculateMcCabe(org.eclips
e.jdt.core.dom.ASTNode)
Author:
Jacopo Emoroso
Version:
V1.1 - 22/09/09 - 17:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the method calculateMcCabe(node) doesn't return 1,2,10 for the 3 method contained in the
input file
Test Succeed If:
the method calculateMcCabe(node) returns 1,2,10 for the 3 method contained in the input
file

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 124 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/JavaSpaceJG.java
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#testCalculateMcCabe()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#TestMcCabe()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#methodCC

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL:
FIELD | CONSTR | METHOD

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
org.uninsubria.macxim.mw.parser.java.test

Class TestSourceInfo
java.lang.Object

org.uninsubria.macxim.mw.parser.java.test.TestSourceInfo
public class TestSourceInfo extends java.lang.Object

Test cases relative to sourceInfo operations. Author:
Vincenzo Pandico, Jacopo Emoroso

Constructor Summary
TestSourceInfo ()

Method Summary
void setUp()
void testGetListJavaSourceProject()

Test check if the files founded fromgetListSourceProject() method are the same
number and are of the same type as in testProjectJavaSpaceJG .
void testGetListSourceProject ()

Test check if the files founded fromgetListSourceProject() method are the same
number and are of the same type as in testProjectJavaSpaceJG .
void testSourceInfo ()

Run the SourceInfo(String directoryProjectPath, String sourceLanguage) constructor
test.
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

TestSourceInfo

public TestSourceInfo()

Method Detail

setUp

public void setUp()

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 125 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#testSourceInfo()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#testGetListSourceProject()
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#testGetListJavaSourceProject()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#setUp()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#TestSourceInfo()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/java/test/TestSourceInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html#nested_class_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/java/test/TestMcCabe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestLCOM.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\class-use\TestMcCabe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

throws java.lang.Exception

Throws:
java.lang.Exception

testGetListJavaSourceProject

public void testGetListJavaSourceProject()

Test check if the files founded fromgetListSourceProject() method are the same
number and are of the same type as in testProjectJavaSpaceJG.
See Also:
org.uninsubria.macxim.mw.parser.java.SourceInfo.getListSourceProject()

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:45
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
files founded are a number different from 2 files or the type of files is not java
Test Succeed If:
files founded are 2 java files

testGetListSourceProject

public void testGetListSourceProject()

Test check if the files founded fromgetListSourceProject() method are the same
number and are of the same type as in testProjectJavaSpaceJG.
See Also:
org.uninsubria.macxim.mw.parser.java.SourceInfo.getListSourceProject()

Author:
Jacopo Emoroso
Version:

V1.1 - 24/07/09 - 15:45
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
files founded are a number different from 2 or the type of files is not xml Test Succeed
If:
files founded are 2 xml files

testSourceInfo
QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 126 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/
http://qualipso.dscpi.uninsubria.it/svn/svntest/analysis/src/org/uninsubria/JavaSpaceJG/

public void testSourceInfo()

Run the SourceInfo(String directoryProjectPath, String sourceLanguage) constructor
test. See Also:
org.uninsubria.macxim.mw.parser.java.SourceInfo.SourceInfo(String
directoryProjectPath, String sourceLanguage)

Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 15:45
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
SourceInfo(String directoryProjectPath, String sourceLanguage) is not initialized
Test Succeed If:
SourceInfo(String directoryProjectPath, String sourceLanguage) is initialized

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
org.uninsubria.macxim.svnmanager.manager.test

Class TestSvnManager
java.lang.Object

org.uninsubria.macxim.svnmanager.manager.test.TestSvnManager
public class TestSvnManager extends java.lang.Object

Test cases relative to svnManager functionalities. Author:
Vincenzo Pandico, Jacopo Emoroso

Field Summary
(package private) repositoryURLjava.lang.String

Constructor Summary
TestSvnManager ()

Method Summary
void setUp()

Initialization of Test SvnManager, that try to run SvnManager functionalities

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 127 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#setUp()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#TestSvnManager()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#repositoryURL
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/svnmanager/manager/test/TestSvnManager.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\class-use\TestSvnManager.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestSourceInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/parser/java/test/TestSourceInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\TestMcCabe.myASTVisitor.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\class-use\TestSourceInfo.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\parser\java\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

void testCheckOut()

Test try to CheckOut Svn Repository source into the specified local path.
void testSetAnonymousConnection()

Test try to create a connection to Svn Repository without authentication.
void testSetAuthenticateConnection ()

Test try to create a connection to Svn Repository with authentication
(Username="ananymous", Password="ananymous").
void testSvnManager ()

Test try to initialize the constructor of a SvnManager
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

repositoryURL

java.lang.String repositoryURL

Constructor Detail

TestSvnManager

public TestSvnManager()

Method Detail

setUp

public void setUp()
throws java.lang.Exception

Initialization of Test SvnManager, that try to run SvnManager functionalities
Throws:
java.lang.Exception

testCheckOut

public void testCheckOut()
throws org.tmatesoft.svn.core.SVNException

Test try to CheckOut Svn Repository source into the specified local path. Throws:
org.tmatesoft.svn.core.SVNException

See Also:
org.uninsubria.macxim.svnmanager.SvnManager.checkOut(String
myWorkingCopyPath, SVNURL url)

Author:

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 128 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/upload/
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#testSvnManager()
http://qualipso.dscpi.uninsubria.it/svn/svntest/upload/
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#testSetAuthenticateConnection()
http://qualipso.dscpi.uninsubria.it/svn/svntest/upload/
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#testSetAnonymousConnection()
http://qualipso.dscpi.uninsubria.it/svn/svntest/upload/
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#testCheckOut()

Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
Unit
Quality Attribute:
Functionality

Test Fail If:
the revision of the project after the CheckOut isn't changed
Test Succeed If:
the revision of the project after the CheckOut is changed

testSetAnonymousConnection

public void testSetAnonymousConnection()
throws org.tmatesoft.svn.core.SVNException

Test try to create a connection to Svn Repository without authentication. Throws:
org.tmatesoft.svn.core.SVNException

See Also:
org.uninsubria.macxim.svnmanager.SvnManager.setAnonymousConnection()

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the connection to Svn without authentication isn't setted
Test Succeed If:
the connection to Svn without authentication is setted

testSetAuthenticateConnection

public void testSetAuthenticateConnection()
throws org.tmatesoft.svn.core.SVNException

Test try to create a connection to Svn Repository with authentication
(Username="ananymous", Password="ananymous").
Throws:
org.tmatesoft.svn.core.SVNException

See Also:
SvnManager.setAuthenticateConnection(String userName, String
userPassword)

Author:
Massimiliano Bosetti

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 129 of 132

http://qualipso.dscpi.uninsubria.it/svn/svntest/upload/
http://qualipso.dscpi.uninsubria.it/svn/svntest/upload/
http://qualipso.dscpi.uninsubria.it/svn/svntest/upload/

Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
Unit
Quality Attribute:

Functionality
Test Fail If:
the connection to Svn with authentication isn't setted Test Succeed If:
the connection to Svn with authentication is setted

testSvnManager

public void testSvnManager()
throws org.tmatesoft.svn.core.SVNException

Test try to initialize the constructor of a SvnManager Throws:
org.tmatesoft.svn.core.SVNException

See Also:
org.uninsubria.macxim.svnmanager.SvnManager.SvnManager(String
repositoryURI, Date date, long revision)

Author:
Massimiliano Bosetti
Version:
V1.0 - 19/09/09 - 12:00
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the SvnManager isn't initialized
Test Succeed If:
the SvnManager is initialized

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD |
CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL:

FIELD | CONSTR | METHOD org.uninsubria.macxim.mw.utilities.decompressors.test

Class TestZipDecompressor

java.lang.Object

org.uninsubria.macxim.mw.utilities.decompressors.test.TestZipDecompr
essor
public class TestZipDecompressor extends java.lang.Object
Test cases relative to ZipDecompressor.
Author:
Vincenzo Pandico, Jacopo Emoroso

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 130 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/utilities/decompressors/test/TestZipDecompressor.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\class-use\TestZipDecompressor.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\TestSvnManager.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/svnmanager/manager/test/TestSvnManager.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\class-use\TestSvnManager.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\svnmanager\manager\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

Field Summary

(package private) zipDecompressororg.uninsubria.macxim.mw.utilities.decompressors.ZipDecompressor

Constructor Summary

TestZipDecompressor ()

Method Summary

void setUp()
void testDecompress()
Try to extract the correct files from a zip folder, and check that the extracted files are equals to ones in the
test dataset.
void testSetSourceCodeLanguageType()
Check that ZipDecomressor set the correct type file (java) to extract.
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

zipDecompressor
org.uninsubria.macxim.mw.utilities.decompressors.ZipDecompressor
zipDecompressor

Constructor Detail

TestZipDecompressor public TestZipDecompressor()

Method Detail

setUp
public void setUp()
throws java.lang.Exception Throws:
java.lang.Exception
testDecompress
public void testDecompress()
throws java.io.IOException Try to extract the correct files from a zip folder, and check that the
extracted files are equals to ones in the test dataset.

Throws:
java.io.IOException
See Also:
ZipDecompressor.decompress(File source, File directory)
Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 11:55
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 131 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#testSetSourceCodeLanguageType()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#testDecompress()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#setUp()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#TestZipDecompressor()
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#zipDecompressor

extracted files are not equals to ones in the test dataset
Test Succeed If:
extracted files are equals to ones in the test dataset

testSetSourceCodeLanguageType
public void testSetSourceCodeLanguageType()
throws java.lang.Exception Check that ZipDecomressor set the correct type file (java) to
extract.

Throws:
java.lang.Exception
See Also:
org.uninsubria.macxim.mw.utilities.decompressors.ZipDecompressor.setSo
urceCodeLanguageType(SupportedLanguage)
Author:
Jacopo Emoroso
Version:
V1.1 - 24/07/09 - 11:55
Test Scope:
Unit
Quality Attribute:
Functionality
Test Fail If:
the files setted in ZipDecompressor are not java files
Test Succeed If:
the files setted in ZipDecompressor are java files

Overview Package Class Use Tree Index Help
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL:
FIELD | CONSTR | METHOD

QualiPSo • 034763 • D5.4.2 • Version 3.0, dated 31/07/2010•Page 132 of 132

file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#method_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#constructor_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#field_detail
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#method_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#constructor_summary
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html#field_summary
file:///\\Users\tosi\Desktop\TDOCtest\allclasses-noframe.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\TestZipDecompressor.html
file:///\\Users\tosi\Desktop\TDOCtest\index.html?org/uninsubria/macxim/mw/utilities/decompressors/test/TestZipDecompressor.html
file:///\\Users\tosi\Desktop\TDOCtest\help-doc.html
file:///\\Users\tosi\Desktop\TDOCtest\index-files\index-1.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\package-tree.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\class-use\TestZipDecompressor.html
file:///\\Users\tosi\Desktop\TDOCtest\org\uninsubria\macxim\mw\utilities\decompressors\test\package-summary.html
file:///\\Users\tosi\Desktop\TDOCtest\overview-summary.html

	1.1. Background
	1.2. Objectives
	1.3. Structure
	2.1. Structural testing criteria
	2.2. JaBUTi
	2.3. Empirical evaluation
	2.4. Dynamic measures for size and coupling
	2.5. Related work
	2.6. Final remarks
	3.1. Towards a maturity model for Open Source Software
	3.2. Maturity level
	3.3. OSS issues
	3.3.1. I1 - Visibility
	3.3.2. I2 - System Analysis and Product Design Activities
	3.3.3. I3 - Development Process
	3.3.4. I4 - System Growth and Community Creativity
	3.3.5. I5 - Documentation and Dissemination

	3.4. OSS-TMM-based Process Assessment
	3.5. Preliminary Results
	3.5.1. BusyBox evaluation
	3.5.2. Apache HTTP Evaluation
	3.5.3. Other Evaluations

	3.6. Related work
	3.7. Final remarks
	4.1. The Lack of OSS Documentation
	4.2. Built-in test in OSS
	4.3. The T-DOC framework
	4.3.1. Test cases documentation
	4.3.2. Regression and Integration testing documentation
	4.3.3. Test cases execution report
	4.3.4. The MACXIM Case Study

	4.4. Final remarks

