
Defining an Open Source Software Trustworthiness Model
Davide Taibi

Università degli Studi dellʼInsubria
via Carloni, 78

22100 – COMO - ITALY
+39 31 238 6328

davide.taibi@uninsubria.it

ABSTRACT

In an ideal word, totally trustworthy software would provide an
absolute guarantee that it will perform its required functions under
all possible circumstances, will do so on time, and will never
perform any actions that have hazardous consequences.

In the real world, this hardly ever happens, since different
software products have different degrees of trustworthiness.

In this paper, we show how we set out to develop a
trustworthiness model for Open Source Software, by identifying a
few quality factors based on a GQM plan.

Based on a large number of interviews, the factors that are
believed to determine the trustworthiness of Open Source
Software will be analyzed. Then, a set of repositories and projects
will be identified and tested so as to gather information about their
intrinsic characteristics and check if it is possible to measure the
previously identified factors. Then, a number of tools will be
developed to measure the factors for which there are no tools
available. Finally, we will build and validate a trustworthiness-
based model.

Categories and Subject Descriptors
D.1.8 Distributed programming, D.2.2.c Distributed/Internet
based software engineering tools and techniques, D.2.10.h Quality
analysis and evaluation, D.2.18.f Quality process analyses,
D.2.19.c Methods for SQA and V&V, D.2.m Miscellaneous

General Terms
Measurement, Documentation, Performance, Reliability, Legal
Aspects.

Keywords
Software trustworthiness, Open Source Software

1. INTRODUCTION
Modern society depends on large-scale software systems of
astonishing complexity. Because the consequences of their
possible failure are so high, it is vital that software systems should
exhibit a trustworthy behavior.

Trustworthiness is a major issue when people and organization are
faced with the selection and the adoption of new software.
Although some ad-hoc methods have been proposed (see for
instance [5]), there is not yet general agreement about software
characteristics contributing to trustworthiness.

Therefore, this work focuses on defining an adequate notion of
trustworthiness of Open Source products and artifacts and
identifying a number of factors that influence it to provide both
developers and users with an instrument that guides them when
deciding whether a given program (or library or other piece of
software) is “good enough” and can be trusted in order to be used
in an industrial or professional context.

2. WHAT TRUSTWORTHINESS IS
Although there is a good deal of research work on software
trustworthiness, the traditional software trustworthiness assurance
mechanisms mainly focus on security and dependability
properties of software behavior.

Since Anderson [1] first proposed the concept of Trusted System
in the 1970s, both academic and industrial circles have studied the
trustworthiness of IT systems and have come up with definitions
of trustworthiness. From the system perspective, ISO/IEC 15408
specifications [2] defines trustworthiness as by saying “A trusted
component, operation or process is one whose behavior is
predictable under almost any operation condition and which is
highly resistant to subversions by application software, viruses
and a given level of physical interference.” The National Institute
of Standards and Technology (NIST) defines trustworthiness as
“software that can and must be trusted to work dependably in
some critical function, and failure to do so may have catastrophic
results, such as serious injury, loss of life or property business
failure or breach of security.” The Trusted Computing Group
provides the following definition [3]: “something is trusted if it
always behaves in the expected manner for the intended
purpose.”.

From the user’s experience, Bill Gates provides the following
definition [6]: “Trustworthy computing is computing that is
available, reliable and secure as electricity, water services and
telephony.”

Since 2006, the concept of trustworthiness has also been
investigated in the QualiPSo project (http://www.qualipso.eu), an

ongoing initiative funded by the EU, which proposes a coherent
and systematic evaluation of the trustworthiness of OSS projects,
and aims at promoting the diffusion of OSS by focusing on OSS
trustworthiness.

In general, trustworthiness is a holistic property that encompasses
security, safety and reliability. To define trustworthy software, we
can draw upon conventional notions of trust in other contexts.
Trust is the reliance by one party on the behavior of another party.
Trustworthiness is not a quality that can be claimed without being
proved. Trust is a matter of perception and implies finding answer
to non technical questions like “why should people have
confidence in my software?” or even “how can I make users
confident in my software?” Trust is a relationship that involves
two parties, the actual and the expected behavior of software. It is
always conditional on the context and operational environment.

People may want to know useful key information about any
software before making any commitment to use it and so, when
users want to adopt new software, they have to trust it. Usually,
during the selection of new software, users start to check if the
selected program does exactly what they want and they collect
information about the products from other users. In this respect,
the web is clearly an extremely valuable and easily accessible
source of information. In fact, many websites record a wide range
of users’ opinions and comments about every kind of product.

Of course, there are other quality related factors that should be
verified. Measuring trustworthiness is possible only if there are
specific attributes to measure. For example, in measuring
reliability there are many useful attributes (such as mean time to
failure of hardware or software).

The problem surfaces both in Closed and in Open Source
Software, but, while in Open Source Software we can measure the
code quality, in Closed Source Software we can only trust the
producer company.

3. THE APPROACH
Organizations perceive software trustworthiness on the basis of
the role that software plays with respect to the organization itself.
For instance, an organization could be a software producer, a
customizer, a value adder, etc.

To determine the trustworthiness factors, we need to take into
account different users, from end users to developers, from system
administrators to upper managers. The identification of the
characteristics and the influencing factors with the subsequent
derivation of measures, based on the business goals and the
analysis of the software products and artifacts, will be carried out
by our group by means of goal-oriented approaches such as the
Goal/Question/Metrics paradigm [4].

This is a necessary step: in software measurement, there is too
often a lack of agreement about the real meaning of a number of
software qualities. Based on these factors, we are going to define
a set of measures, so as to capture the various components of
trustworthiness from different viewpoints, and they will be
collected based on both static (i.e., based only on the analysis of
the source code or artifacts) and dynamic measures (i.e., based on
the execution of the software code or, wherever possible, the
software artifacts).

Afterwards, based on the identified measures, we are going to test
a set of relevant Open Source projects.

Finally, we will build a trustworthiness-based model on the back
of the test results.

The whole process is explained next.

3.1 Trustworthiness Factors
The first step focuses on defining an adequate notion of
trustworthiness of software products and artifacts and identifying
a number of factors that influence it.

The definition will be driven by the specific business goals
elicited in the GQM plan. To this end, we have carried out a
survey to elicit these goals and factors directly from industrial
players.

The survey was conducted via interviews supported by a
questionnaire, partially derived from the existing literature. We
interviewed several people with various professional roles, trying
to derive the factors from the real user needs instead of deriving
them from our own personal beliefs and/or only by reading the
available literature.

The questions in the questionnaire were mainly classified in three
different categories:

• Organization, project, and role. These questions are
needed to profile the interviewed person.

• Actual problems, actual trustworthiness evaluation
processes, and factors.

• Wishes. These questions are needed to understand what
should be available but is not, and what indicators
should be provided for an OSS product to help its
adoption.

Based on the analysis of internal and external characteristics of
software products, measures will be identified to quantify the
factors. The results will be useful to check the quality of the first
factors identified and in case if it will be needed to change some
of its.

We believe that dynamic metrics will be most useful for the
software trustworthiness definition. Instead of only relying on the
results of static code analysis, based on the execution of a test set
it will be possible, as an example, to assess how closely related
two components are during their executions. The intrinsically
dynamic qualities can only be an approximated through static
analysis. So, dynamic metrics will be collected in addition to
traditional static metrics.

Afterwards, results will be considered, so as to take out useless
factors and measures and introduce new ones. If needed, other
empirical studies will be carried out, to provide more support for
their usefulness.

3.2 Analysis of Relevant Open Source
Projects and Artifacts
That activity will be composed by three rounds: the first, before
the first round of empirical studies; the second, between the first
and the second rounds of empirical studies; the third, after the
second round of empirical studies.

Based on the goals previously identified, we will analyze software
products and artifacts, to identify commonalities and differences
and gather information on their general intrinsic characteristics

and the way software is used by the software industry. With the
aid of automated tools, a number of Open Source Repositories
will be analyzed. In case of unavailability of tools aimed to
measure a specific factor, new tools will be developed.

In the second and third rounds, in order to focus the intrinsic
characteristics analysis that appear to be relevant for
trustworthiness evaluation, the experimental results will be taken
into account.

3.3 Definition of Standard Test
Approaches, Test Suites, and Benchmarks
One of the biggest OSS problems is the lack of a comprehensive
and widely adopted testing strategy allowing only limited
potential for verification. Mainly, OSS is developed without
considering complete coverage tests. That problem mostly relies
on trustworthiness. People cannot really trust a program if they do
not know if it will do exactly what it should do.

A common test approach, applicable to a wide range of OSS, may
considerably facilitate OSS verification.

We will develop a common performances and functional tests
approach aimed to produce a representative set of test suite and
benchmark specially considering the project previously identified
in Section 3.2 and the quality factors defined as described in
Section 3.1.

Additionally, we will investigate the potential of Aspect Oriented
Programming (AOP)[7] in measuring dynamic measures without
the need for manual code instrumentation.

Test suites will be defined for a project and artifacts subset that
will address and cover the quality factors and trust goals.

In addition, as testing will also be used to collect dynamic metrics
for OSS qualities that are usually quantified via static metrics, it
will be necessary to use special care in the definition of the ways
in which that metrics are going to be collected.

It must be noticed that the dynamic metrics must be selected
dependent on of the available technologies. That depends on code
instrumentation issues that deeply depend on the programming
language, technologies and environment. During this analysis we
will start addressing a specific language (e.g. Java) and then we
will extend code instrumentation to other languages.

Through the trustworthiness factors, different scenarios will be
defined aimed at modeling the different system usage.

We will define dynamic metrics and benchmarks to be collected
based on the execution of the scenarios.

Different benchmarks will be used for different qualities and for
different types of scenarios, which will be used to profile users. A
user can choose one or more scenarios that are akin to the usage
he/she intends to do of the system. Dynamic metrics will be
collected at run-time. In order to guarantee privacy and non
disclosure, users will be always given the possibility to select
which metrics to collect and which metrics not to collect.

The purpose of the dynamic metrics collected for Scenarios are
the same as the dynamic metrics collected for test suites. Since
dynamic metrics are relevant only for a subset of the
trustworthiness qualities, benchmarks will address such subset.

We will study commonalities and differences of the results across
different scenarios.

In order to address the complexity of system deployment in
relation to different business scenarios, a coherent methodology
for defining test suites and scenarios will be developed. This
methodology will be applicable also to systems and environments
outside the project set.

3.4 Tool Definition and Building
In this activity, we will identify, specify, and develop a set of
tools that support the measurement and assessment of the quality
factors of the software products and artifacts that affect trust in
open source software products.

The tools developed will aim at making the evaluation of OSS
trustworthiness as easy and seamless as possible for developers,
users and managers. In particular, the tools will automate as many
activities as possible and will provide developers, users, and
managers with information that are reliable and useful for taking
decisions involving trust in OSS.

When possible, tools will be obtained by adapting, extending and
integrating existing tools.

The tools will integrate a number of OSS tools that support the
creation of a measurement plan, starting from the main actors’ and
stakeholders’ objectives and goals (developer community, user
community, business needs, specific users, etc.), down to the
specific static and dynamic metrics that will need to be collected
to fulfill the goals.

Specifically, the tools will support:
• the definition of a customized measurement plan
• the collection of static metrics
• the definition of test suites
• the execution of test suites
• the definition of scenarios
• the collection of dynamic metrics
• the analysis of the collected data
• the transfer and exchange of the collected data to be

analyzed by one or more actors or stakeholders
• the building of models of various nature; these could be

based on Statistics or Machine-Learning techniques

3.5 Model Building
In this activity we will develop a trustworthiness models through
two rounds. The objectives will be achieved through an
experimentation sub-activity and a model-building sub-activity.

The model will use a number of factors as its independent
variables and an assessment of trustworthiness by OSS
practitioners and users as its dependent variable. Therefore, it will
be necessary to collect data from OSS practitioners and users
about the trustworthiness of existing OSS products.

In the first round, empirical studies will be carried out in industrial
environments. In this activity we need to take special care in
designing and executing the experiments in order to minimize the
risk of having incomplete or misleading information. The
empirical studies must be as little invasive as possible for the
industrial environments studied to disturb the observed
environment as little as possible maximizing the chances that data

are actually collected from the industrial environment. To this
end, the automated tools built as described in Section 3.4 will be
used.

At any rate, questionnaires and interview may also be used to
collect additional pieces of information that would not be possible
to retrieve from the raw data. The collected information will be
collected and stored in repositories.

In the second round of empirical studies, based on the results of
the first round of experiments, some measures may be deleted,
while others may be added. These tasks will clearly provide inputs
to the tool building and will rely on the tools to be carried out
effectively and efficiently. In addition to data on trustworthiness,
data on the cost-effectiveness of and practicality of the approach
will be collected to assess the overall impact that the approach
may have on industrial environments.

The information collected in the second round of empirical studies
will be used to confirm and enrich the models obtained in the first
round of empirical studies.

Finally, the information collected will be analyzed to find out
whether the factors influence the trustworthiness of the OSS
products and artifacts and the results obtained in the two rounds of
empirical studies will be compared.

The analysis will be carried out via a variety of different statistical
(e.g., Ordinary Least Squares, Logistic Regression) and machine
learning (e.g., Decision Trees, Random Forests) techniques will
be used for data analysis, based on the specific independent and
dependent variables involved and the objectives of the data
analysis.

As a result, the analysis of the data will be packaged in models
and lessons learned that will have been validated and interpreted
by researchers and practitioners and will be subject to a
confirmatory second round of empirical studies.

Models and lessons learned will be made explicit and will be
presented to the practitioners in the European software industries
that participated in the definition of the business goals and in the
empirical studies.

4. ACKNOWLEDGEMENT
The research presented in this paper has been partially funded by
the IST project “QualiPSo", sponsored by the EU in the 6th FP
(IST-034763).

5. REFERENCES
[1] Anderson J. P. Computer Security Technology Planning

study, ESD-TR-73-51, Vol1, AD758 206, ESD/AFSC,
Hanscom AFB, Bedford, M.A., October, 1972

[2] ISO/IEC, Information Technology-Security Techniques-
Evaluation Criteria for IT security, Pat1: Introduction and
genera Model 2nd ed. 2005-10-01

[3] Trusted computing group. TCG Architecture overview. V1.
2, 28 April 2004

[4] Basili V., and Rombach H.D., The TAME project: towards
improvement-oriented software environments, IEEE
Transactions on Software Engineering, June 1988.

[5] D.Taibi, L.Lavazza, S.Morasca. OpenBQR: a framework for
the assessment of Open Source Software, Open Source
Software 2007, Limerick, June 2007.

[6] C. Mundie, B.Gates: How Microsoft Is Refocusing on
Security, Reliability, Privacy, and More, as Part of
Trustworthy Computing Initiative, February 2002
(http://www.microsoft.com/PressPass/features/2002/feb02/02
-20mundieqa.mspx)

[7] http://en.wikipedia.org/wiki/Aspect-oriented_programming

