
Architectural Smells Detected by Tools:
a Catalogue Proposal

Umberto Azadi
Università degli Studi di Milano - Bicocca

Milan, Italy
u.azadi@campus.unimib.it

Francesca Arcelli Fontana
Università degli Studi di Milano - Bicocca

Milan, Italy
arcelli@disco.unimib.it

Davide Taibi
Tampere University
Tampere, Finland
davide.taibi@tut.fi

Abstract—Architectural smells can negatively impact on dif-
ferent software qualities and can represent a relevant source of
architectural debt. Several architectural smells have been defined
by different researchers. Moreover, both academia and industry
proposed several tools for software quality analysis, but it is not
always clear to understand which tools provide also support for
architectural smells detection and if the tools developed for this
specific purpose are effectively available or not. In this paper we
propose a catalogue of architectural smells for which, at least
one tool able to detect the smell exists. We outline the main
differences in the detection techniques exploited by the tools and
we propose a classification of these architectural smells according
to the violation of three design principles.

Index Terms—Architectural Smells, Architectural Smells Cat-
alogue, Architectural Smells Detection, Architectural Debt

I. INTRODUCTION

Architectural issues, as outlined by Ernst et al. [1], are one of
the greatest sources of technical debt. Hence, it is important
to understand how to identify and manage them, to avoid and
reduce technical debt accumulation. Architectural smells (AS)
can be seen as the code smells [2] counterpart at the architec-
ture level. ASs represent the violation of design principles or
decisions that impact on internal software qualities [3] with
large negative effects on maintenance and evolution costs [4].
They represent a source of architectural debt [5], important to
identify, investigate and remove through different refactoring
steps.

The interest on ASs is growing during the last years
([5][6][7][8]), and different authors provided different defini-
tions of ASs and in some cases they also provided the tool to
detect the AS. According to our previous experience in using
and comparing different tools for software maintenance [9],
software quality assessment [10][11], code and architectural
smells detection [12][13], we focus here our attention on the
available tools that can be used to automatically detect ASs.
Moreover, the application of different detection mechanisms
for the same AS could lead to different results. Therefore, we
are also interested to compare the detection techniques adopted
by the tools.

Hence, the aim of this paper is to propose a catalogue of
ASs that can be detected by tools and compare the detection
techniques adopted.

In order to investigate our goal, we identified a set of tools
and in particular we selected a list of nine tools. We did not

consider tools that are no longer available on the market for
several years.

According to our aim, we collected the following data: (i)
the list of the ASs detected by the tools, (ii) the smell definition
on which the tool relies for the smell detection, (iii) at least a
high-level description or the implementation of the detection
strategy/rule used for each AS. Furthermore, these data have
been verified through our usage of the tool if available or
otherwise as reported in a recent published paper on the tool
(see Section III-A).

Each tool could detect a various set of smells, however
we decided to focus our attention only on ASs, i.e. poor or
rushed design choices which can cause architectural problems
or anomalies that can lead to software faults, failures or quality
downfalls such as a progressive architecture erosion [13]. We
are aware that some code smells proposed by Fowler [2] can
have an impact on different architecture issues, but we have
not considered here this kind of smells. This definition of AS
is also consistent with the definition accordingly to which
“a software system’s architecture corresponds to the set of
principal design decisions made during its development and
any subsequent evolution” [14]. It is important to specify that,
according to this definition, we will consider as ASs some
smells that are sometimes indicated as design smells or anti-
patterns, while we do not consider as architectural all the
smells that do not respect the definition reported above.

Hence, in this work, we aim to answer the following
questions:

• Q1: Which ASs are detected by at least one tool? can we
provide a catalogue of these AS?

• Q2: How an AS is detected? which are the main differ-
ences in the detection rules adopted by different tools?

• Q3: Which kind of classification/s of AS can be pro-
posed?

The answers to these questions can be useful to (i) software
developers/maintainers to be able to identify which AS can be
detected by a tool, to choose the tool to be used according
to their aims or to identify the tool able to detect the largest
number of AS and (ii) can be useful to the developers of
the detection tools to immediately get an overview of the
different used detection techniques, to be able to exploit or
improve them. According to AS classification, a classification
is useful to group ASs according to some features or the impact



they could have on some quality attributes or the violation of
some well known design principles. Therefore, we propose a
classification based on design principle violation.

In order to answer our questions, we propose a new template
to be used in the AS catalogue, where each smell is defined
according to different features (described in Section III-B).
Among them, we take into particular account the detection
techniques exploited by the tools outlining the main differ-
ences between them.

This template has been produced by adapting the template
proposed by Ganesh et al. [15], in order to make it more
suitable for our purpose focused on the AS detection support.
The differences and the similarities between the two templates
are described in detail in Sections III-B and III-C.

The paper is organised through the following sections: In
Section II we report some related works, in Section III we
introduce the study that has been accomplished by describing
(i) how the tools have been selected, (ii) the template used to
document the ASs in the catalogue and (iii) the principles
through which the ASs have been classified. Section IV
contains the catalogue of the ASs. In Section V, we discuss
the proposed ASs classification. Finally, in Section VI we
conclude our work and describe some future developments.

II. RELATED WORKS

Different works have been proposed in the literature on
code smells [16], on the comparison of code smell detection
techniques or tools i.e [17], on code smell classification [18]
and the well known catalogue provided by with the definitions
of 23 code smells of Fowler [2]. Less work has been done on
AS catalogue and classification.

Garcia et al. [19] provided the first catalogue of AS,
describing each AS with the related quality impact and trade-
offs and providing a generic schematic view by means of UML
diagrams. However, this catalogue contains only four AS and
no reference to the detection support is provided.

Le et al. [20] proposed a classification of AS based on four
categories: Interface, Change, Dependency and Concern-based
smells. They have defined different ASs in these categories
and outlined the impact of these smells on different quality
attributes (e.g. complexity, reusability, modularity,..).

Lippert and Rook [3] defined and classified different AS
at different levels, by considering three categories of issues
related to Dependency, Inheritance and Size, with respect to
packages, subsystems, and layers. In particular, they defined
AS smells in dependency graphs, inheritance hierarchies,
packages, subsystems and layers.

Ganesh et al. [21] provided a catalogue of smells with a
focus on the so called design smells, including code smells [2],
antipatters [22] and ASs. We discuss in details their classifi-
cation and compare it with our classification in Section III-C
and Section V.

Mo et al. [23] proposed a list of AS based on Baldwin
and Clarks design rule theory [24] and basic software design
principles. They summarised these architecture issues into five
architecture hotspot patterns defined at file and package levels.

Hence, our work differs from previous works, since we
provide a catalogue of only AS for which we know there is at
least a tool able to detect them. We outline the main differences
in the detection techniques exploited by the different tools and
we provide a classification of these AS according to three
different categories described in Section III-C.

III. STUDY DESIGN

A. Selection of the detection tools

According to our experience in developing an AS detection
tool [25], and our great interest in this area [6], [13], we hope
we reached a good knowledge on the community working on
the development of tools able to detect AS.

Hence, according to this knowledge we identified a list of
tools reported in Table I which we have considered for this
study. In Table I we report other useful information about
the tools (supported platform, languages1, licence and if the
tool is currently supported and available). Obviously, we want
to underline that the reported tools do not cover the whole
panorama of the available tools that can be used to evaluate
software architecture quality. We focus here our attention on
tools able to detect AS of some kind. Furthermore, we were
not able to gather all the required information (the smell
definitions and the detection strategies) for some tools, such
as CAST [26], which allows to detect cyclic dependency and
other architectural violations, or Scoop [27] and Titan [28]
tools. Furthermore some tools are no longer available since
several years, such as inFusion and SA4J.

Hence, a specific tool has been selected only if we managed
to gather a certain amount of information about it from at least
one “official” source, i.e. the website of the tool, a published
paper, the tools GUI or the tools source code. Moreover, if the
tool was available we experimented it by analysing different
projects in order to detect the AS. We could obviously have
omitted some tools and some ASs in this study, that can be
integrated into a next refinement of the catalogue. As already
outlined, we experimented some of the tools of Table I for
different purposes ([11],[12]).

For this study, we focused our attention on the identification
of the AS detected by each tool. An AS has been included in
the catalogue only after the tools inspection to check which
AS are detected by each tool. We found different cases: AS
detected only by a specific tool, AS detected by more tools
and sometimes called and detected in different ways and other
scenarios described in Section IV.

B. Architectural smells catalogue definition

The template that we define to present each AS is based
on the one defined by Ganesh et al. [15]. However there
are several differences due to our intended purpose related
to the detection support of each AS. Indeed, they clearly
aim to create a catalogue where every facet of each AS is
taken in consideration and deeply described through different
fields which include a Short description, a Long description,

1Currently, we found only tools based on object-oriented language analysis



TABLE I
ANALYSED TOOLS

Tool name Supported
platform

Supported
languages Licence Currently

Available Ref

AI Reviewer
Windows,
Linux,
Mac OS

C, C++ Commercial Yes [29]

ARCADE
Windows,
Linux,
Mac OS

Java Free No [30][20]

Arcan
Windows,
Linux,
Mac OS

Java Free Yes [31]

Designite Windows C# Commercial Yes [32]
Hotspot Detector2 N.A. Java N.A. No [23]

Massey Architecture Explorer
Windows,
Linux,
Mac OS

Java Free No [33][34]

Sonargraph
Windows,
Linux,
Mac OS

Java, C#,
C, C++ Commercial Yes [35]

STAN
Windows,
Linux,
Mac OS

Java Commercial Yes [36]

Structure 101
Windows,
Linux,
Mac OS

Java, .Net,
C, C++ and
other 10

Commercial Yes [37]

Rationale and Example(s) for each smell. Hence, a great part
of their template describes the AS or states the problems
related to it, and only two fields in their template provide
some hints on the detection and refactoring strategies, without
delineate any actual algorithm. While in our approach we
provide only a brief description of each AS, and we present
a comparison between the actually implemented detection
strategies used by each tool for each of the detected smell. The
reason why we decided to not describe in detail each smell
is based on the fact that they have been already introduced,
defined and published in the literature.

However, we noticed that different tools used different
definitions, therefore the description that has been provided for
each AS in the catalogue does not match exactly any of the
definition used by the tools, but it is an attempt to incorporate
them into a more general description.

The template that we propose in order to present each AS
is organised as follows:

• Name: the name through which most of the tools refers
to that AS. In the absence of a majority, we selected
the one that we consider to be the most intuitive and
representative;

• Also known as: the names through which the tools refer
to that AS, that are different from the one specified in
the Name field. As for example Cyclic Dependency and
Tangle smells;

• Description: a brief description of the AS, which in most
cases will be deliberately very general in order to include
all the definitions used by each tool;

• Variant/s: ASs that are fundamentally identical, but ex-
hibit a slight variation from the main smell. For example,
the variation may include a special case (as in the case
of Hub-Like Dependency and Overreliant Class) or a
more general form of the AS (as in the case of Hub-Like
Dependency and Dense Structure);

2Hotspot Detector has been incorporated in a new tool called Archdia (https:
//www.archdia.net/)

• Violated principle/s: object-oriented design principles
whose violations can lead to this smell. The principles
taken into consideration are those defined in Section
III-C;

• Tools: tools that are able to detect the smell;
• Detection Comparison: a comparison between the detec-

tion strategies accomplished by each tool. Furthermore,
the default thresholds used for the detection are going to
be reported when available; it is important to mention that
some of the considered tools allow to customise them.

C. Architectural smells classification

We propose a classification of the AS according to the vi-
olation of some design principles in relation to each smell.
We considered the classification proposed by Ganesh et
al. [15], based on four design principles: Modularity, Hi-
erarchy, Abstraction and Encapsulation. As asserted by the
authors [21] [15], the rationale of this classification is that it
enables an intuitive understanding of the smell and it allows to
get a better idea on how to refactor the AS. We found this type
of classification very useful because in many cases it helps to
retrieve the decision that had caused the occurrence of an AS.

We decided to not consider the Abstraction and Encap-
sulation principles because they are more closely related to
the concept of code smells. While, as explained in Section
I, we focus our attention on the concept of AS. Moreover,
we defined a new principle, called Healthy Dependency
Structure.

Therefore, the principles that we selected for our classifica-
tion are the following:

• Modularity [15]: Modularity is the property of a system
that has been decomposed into a set of cohesive and
loosely coupled modules.

• Hierarchy [15]: Hierarchy is a ranking or ordering of
abstractions, where an abstraction denotes the essential
characteristics of an object that distinguish it from all
other kinds of objects and thus provides crisply defined
conceptual boundaries, relative to the perspective of the
viewer.

• Healthy Dependency Structure: The dependency struc-
ture of a (sub-)system is considered unhealthy when it
promotes a chain of changes in the system each time it
is modified.

The Healthy Dependency Structure principle aims to
group some of the already well-known best practices that in-
volve dependencies, which are: (i) the desirable acyclic nature
of a subsystem’s dependency structure [38], (ii) the desirable
equality of stability between the two elements (classes or
packages) that are involved in a dependency relationship [38]
and (iii) all the principles that aim to prevent the occurrence
of the Rigidity [38], which is a symptom of rotting design.

Therefore, it is possible to see how this principle, that we de-
fined for our classification, is related to the best practices and
to the symptoms of rotting design that have been introduced
by Robert C. Martin [38]. Furthermore, our main objective



through this principle is to identify a set of ASs that negatively
affect (i.e. increase) the change-proneness of the classes.

It is important to underline the difference that occurs
between the Healthy Dependency Structure and the Modularity
principles, which in practice might often be violated together.
An example, useful to highlight the distinction, is the way in
which a God Component smell (Section IV.6) might become a
Hub-Like class smell (Section IV.2): a God Component imple-
ments a significant amount of business logic, that however can
be implemented with few public methods (used by the other
classes) and a vast majority of private method (useful only to
carry out all the concerns). Therefore, the Modularity principle
is violated because of the lack of separation of concerns but
the dependency structure is healthy because the change in the
God Component does not promote changes in other classes.
In such a situation, through a poor refactoring process, it is
possible to separate the concern into several classes that use or
are used by the God Component. Therefore, the problematic
class is no longer a God Component (because the concern
has been spit), but it will become a Hub-Like class, for all the
dependencies that are generated during the refactoring process.
Therefore, the dependency structure has become unhealthy
because a slight adjustment in the Hub-Like class will generate
a ripple effect, while the modularity is at least improved by
the refactoring, because the concerns have been separated.

IV. ARCHITECTURAL SMELLS CATALOGUE

In this section, we provide the catalogue of the AS following
the template described in Section III-B. A key aspect of this
template is the so-called “Violated principles” by the AS that
we use for the classification of the smells (see Figure 2).

1. Cyclic Dependency (CD)
• Also known as: Tangle [37] [36], Cross-Module Cy-

cle [23], Cross-Package Cycle [23], Cycle of classes [29],
Cyclically-dependent Modularization [32].

• Description: this smell arises when two or more ar-
chitecture components depend on each other directly or
indirectly.

• Variants:
– Strong Circular Dependencies Between Packages [33]:

in this case, a custom metrics called Antipattern
score [39] is used to select the most severe occurrences
of this AS.

– Shape detection [25]: in this case, for each instance
of the smell detected, the tool can also highlight its
“shape”, i.e. the topology of the cycle. The five shapes
that can be already detected by at least one tool are
reported in Figure 1.

Fig. 1. Cycles shapes [25]

• Violated principles:
– Healthy Dependency Structure: the subsystems in-

volved in a dependency cycle can be hard to release and
maintain. Furthermore, the presence of this AS implies
that the participating classes and packages cannot be
deployed and maintained separately.

– Modularity: the presence of this AS implies that there
are two pieces of code, that are highly coupled to
each other in a direct or indirect way. This situation
might suggest that the responsibilities are not separated
correctly.

• Tools: All the tools that have been taken into considera-
tion in this work detect this smell. However, it is impor-
tant to mention that there are many other tools that allow
to detect only the Cyclic Dependency, due to its relevance
and criticality [3][21]. Some examples3 are: ClassCycle,
Dependency Finder, JArchitect, JDepend, Lattix LDM,
NDepend, CAST.

• Detection Comparison: The tools usually (Designite,
Massey Architecture Explorer, Sonargraph, STAN, Struc-
ture 101) detect this smell only at the class level, then
analyse this smell at package level through the general-
isation of the dependency graph at class level obtained
using the quite standard rule: if a class a, contained in
package A, depends on class b, contained in package B,
then the package A depends on package B. This type of
analysis is useful for a visual representation because it
allows to start with a high level view and then expand
the most relevant packages. The detection approach pre-
viously mentioned is also used by others tools (Arcan,
Hotspot Detector), however, they treat the packages and
the classes as distinct elements and perform a two layers
analysis. The possibility of considering these two layers
individually during the architecture quality assessment
can be very useful for many reasons, as for example the
prioritisation of the refactoring, in fact the intra-package
cycles are usually considered less problematic compared
to the inter-package cycles. Finally, AI Reviewer and
ARCADE consider this smell only at class level.

2. Hub-Like Dependency (HLD)

• Also known as: Hub-like Modularization [32], Link
Overload [20].

• Description: The Hub-Like Dependency smell occurs
when an abstraction or a concrete class has (outgoing
and ingoing) dependencies with a large number of other
abstractions or concrete classes.

• Variants:
– Overreliant Class [29]: this smell refers mostly only

to the outcoming dependencies. This AS is often men-
tioned in the literature as breakable dependencies [40].

3http://classycle.sourceforge.net/, http://depfind.sourceforge.net/, https://
www.jarchitect.com/, https://github.com/clarkware/jdepend, http://lattix.com/,
https://www.ndepend.com/, https://www.castsoftware.com/



– Dense Structure [32]: this smell arises when compo-
nents have excessive and dense dependencies without
any particular structure.

• Violated principles:
– Modularity: the classed affected by this AS are usually

overloaded with responsibilities. In fact they use a
high number of other classes (incoming dependencies),
i.e. they require a significant amount of information
and/or functionalities that are not placed within the
class. Furthermore they are used by a high number
of other classes (outcoming dependencies), hence the
information and/or the functionalities of the classes are
required and most likely used by other classes. This
scenario highlights a severe coupling problem between
the hub-like class and all the others classes involved in
the AS.

– Healthy Dependency Structure: the severe coupling
described above implies a dependency structure partic-
ularly unhealthy. That is because a change in a “hub”
class will require to adapt at least all the dependent
classes. Furthermore, the classes on which the “hub”
class depends can be affected by the changes in the
“hub” class and their change will affect the “hub”
class. Therefore even the slight adjustment in a system
affected by this smell will generate a ripple effect in
all the involved classes.

• Tools: AI Reviewer, ARCADE, Arcan and Designite.
• Detection Comparison: the detection strategies are very

different from each other due to the lack of an agreement
regarding the number and the kind of dependencies
required in order to detect this problem. In fact, AI
Reviewer focuses the detection on concrete classes and
the detection rule for this smell looks for structured types
referencing more than 7 concrete (non-abstract) classes.
While Arcan [13] focus the detection on abstraction and
specifies that the dependencies have to be balanced, i.e.
the difference between ingoing and outgoing dependen-
cies must be less than a quarter of the total number of
dependencies of the class. Instead, Designite4 requires
fun-in and fan-out metric values at least equal to 20.
Finally ARCADE detects this smell if the dependencies
number (ingoing and outgoing) is higher then the mean of
the dependencies number (over all the system), plus the
standard deviation of the dependencies number (over all
the system), multiplied for a constant called standard
deviation factor, which weights the contribution
of the standard deviation (by default it is set to 1.5).
Hence, according to the different metrics and threshold
values adopted, the detection results can be largely dif-
ferent.

3. Unstable Dependency (UD)
• Also known as: Unstable Interface [23], which we

describe as a variant.

4 http://www.designite-tools.com/designite/does-your-architecture-smell/

• Description: Unstable Dependency describes a subsys-
tem (component) that depends on other subsystems that
are less stable than itself and because of this dependency
the more stable files (classes) are changed frequently with
the other files.

• Variant:
– Unstable Interface [23]: this smell is focused on the

stability of a set of specific files, which are the so-
called Design Rule Spaces [23], i.e. the highly influ-
ential files of the system.

• Violated principle:
– Healthy Dependency Structure: the dependencies that

allow this smell to arise are extremely unhealthy
because they increment significantly the change-
proneness of the more stable subsystem and they also
directly violate the Stable Dependencies Principle [38].

• Tools: Arcan, Designite and Hotspot Detector.
• Detection Comparison: all the smells that fall in this

group implement the most common definition of this
smell. However, some differences that concern the de-
tection can be highlighted. In fact Hotspot Detector [23]
evaluates the stability based on the frequency with which
two files change together, according to the revision
history. Instead Arcan [13] and Designite4 relies on
the Martin’s Instability metric [38]. As consequence the
detection results obtained through Hotspot Detector and
the ones obtained using Arcan or Designite are likely to
be different from each other.

4. Cyclic Hierarchy (CH)
• Also known as: Unhealthy Inheritance Hierarchy5[23],

Subtype Knowledge [33].
• Description: This AS refers to the mistake of directly

referencing a subtype from a supertype. Therefore, it
implies that there are circular dependencies between the
namespaces containing sub- and supertype.

• Violated principles:
– Hierarchy: inheritance should model a generalisa-

tion/specialisation hierarchy and the hierarchy speciali-
sations should have dependencies that are directed only
towards generalisations [15].

– Healthy Dependency Structure: instability in the sub-
type will cause instability in the super-type, further-
more the supertype cannot be used and understood
without its sub-type.

• Tools: AI Reviewer, Designite, Hotspot Detector and
Massey Architecture Explorer.

• Detection Comparison: considered the specificity of
the AS it is not strange to notice a high similarity in the
definitions used by each tool. From the detection point
of view, it is possible to see this AS as a very specific

5 Hotspot Detector considers an inheritance hierarchy to be problematic
when it falls into at least one of two cases [23]. In this catalogue, both these
problems have been considered, however as two different ASs (Sections IV.4
and IV.7).



type of Cyclic Dependency (Section IV.1). Moreover,
every tool states clearly that each occurrence of this AS
should be refactored because it is far more likely to be
an error or an oversight compared to any straightforward
Cyclic Dependency, and this is why the AS is considered
separately.

5. Scattered Functionality (SF)

• Also known as: Scattered parasitic functionality [20].
• Description: This smell arises when multiple compo-

nents are responsible for realising the same high-level
concern.

• Violated principle:
– Modularity: This smell violates the principle of sep-

aration of concerns because the responsibilities are
scattered across multiple components. Therefore, even
if in this situation any modification that involves the
“high-level concern” mentioned in the Description
will generate an unhealthy chain of changes, the main
problem is not related to the dependency structure but
it is related to how the concerns are organised.

• Tools: ARCADE and Designite.
• Detection Comparison: The detection of this smell

depends on the definition of concern on which the tool
relies. In fact, each tool has to define the concept of
“concern” not only in theory, but through some actually
computable metrics. Designite highlights the concern
by considering the external components with which the
system interfaces. Accordingly, Designite4 detects this
smell by computing the number of accesses to external
components and the default threshold for this metric is
one. While the detection performed by ARCADE is based
on the concept of “concern” introduced by Garcia et
al. [41]. In fact, they define a “concern” as a role, respon-
sibility, concept, or purpose of a software system. In order
to group entities that handle similar system concerns into
a single cluster, ARCADE leverages information retrieval
techniques and machine learning algorithms [30].

6. God Component (GC)

• Also known as: God Class [29], Concern overload [20].
• Description: this smell indicates that a component

implements an excessive number of concerns and accu-
mulates too much control.

• Violated principle:
– Modularity: this smell directly violates the principle

of separation of concerns. In fact usually a God
Component implies the presence of several satellite
classes, that do not implement any functionality. This
situation highlights a severe coupling problem between
the God Component and the satellite classes and a
severe cohesion problem within the God Component.

• Tools: AI Reviewer, ARCADE and Designite.
• Detection Comparison: the detection rule implemented

by AI Reviewer6 for this smell looks for classes which
modify either directly or through a setter method least 3
data members (ex. fields) belonging to unrelated classes.
A class is considered unrelated to the target class if it
doesn’t belong to the same class hierarchy and it doesn’t
contain the target class. While Designite4 detects this
smell at class level when is excessively large in terms of
LOC, more than 27.000, and at package level when the
number of classes is higher than 30. Finally ARCADE
relies on a custom metric called Number of Concerns
per Component [20]. The detection is accomplished by
calculating the proportion of the Number of Concerns
per Component and by checking if this number exceeds
the Concern Overload Topic Threshold (fixed to 0.10 by
default).

7. Abstraction without Decoupling (AwD)
• Also known as: Unhealthy Inheritance Hierarchy 5 [23].
• Description: This AS describes a situation where a

client class uses a service represented as an abstract
type, but also a concrete implementation of this service,
represented as a non-abstract subtype of the abstract type.

• Violated principle:
– Healthy Dependency Structure: the occurrence of this

AS makes it difficult to replace the service implemen-
tation and to dynamically reconfigure or upgrade the
systems. The client code must be updated, hence the
client couples service description and service imple-
mentation together.

• Tools: Hotspot Detector and Massey Architecture Ex-
plorer.

• Detection Comparison: the main difference between the
two detection rules is that Hotspot Detector [23] requires
that the class depends on all the subtypes of the hierarchy,
while Massey Architecture Explorer [33] requires that
the class depends on at least one of the subtypes of the
hierarchy.

8. Multipath Hierarchy (MH)
• Also known as: Degenerated Inheritance [33].
• Description: this smell arises when there are multiple

inheritance paths connecting subtypes with their super-
types or a concrete class with their abstractions (abstract
classes or interfaces).

• Violated principle:
– Hierarchy: a hierarchical organisation of types helps to

better understand the relationship between the types.
When this smell occurs, it clutters the hierarchy and
it increases the effort required to separate the sub-
and superclasses. Therefore, the affected hierarchical
structure is hard to understand and maintain [21].

• Tools: Designite and Massey Architecture Explorer.
• Detection Comparison: the specificity of the AS causes

a high consistency in the definitions. The detection is

6http://www.aireviewer.com/doc/analyses/



accomplished by representing each hierarchy as a graph
and by checking that the resulting graph is a tree. It is
important to highlight that every tool states clearly that
each occurrence of this AS should be refactored because
it is quite likely to be the result of an error or an oversight
operated during the implementation process.

9. Ambiguous Interface (AI)

• Also known as: Underused Interface [29].
• Description: This AS refers to the mistake of over-

engineering an abstraction (an interface or a pure abstract
class) by adding methods intended to accommodate po-
tential future requirements.

• Violated principle:
– Modularity: an extremely general abstraction promotes

the creation of classes characterised by a high number
of responsibilities, due to the large number of methods
that the abstraction requires to be implemented (or the
abstract class to be extended). Furthermore, the cohe-
sion within the class decreases because of the “general
purpose” approach used to define the abstraction.

• Tools: AI Reviewer and Designite.
• Detection Comparison: Designite considers this smell

as a problem when there is only one entry-point to the
system defined through that interface. While AI Reviewer
is less restrictive and refers to an extremization of the
code smell Speculative Generality [2] that causes the
creation of very few general interfaces.

10. Unutilized Abstraction (UA)

• Also known as: Policy Detail Dependency [29], Super-
type Bypass [29].

• Description: This AS refers to the mistake of directly
referencing a concrete class or struct instead of referenc-
ing one of its supertypes from an abstract class or struct.

• Violated principles:
– Hierarchy: one of the advantages of modelling a

generalisation/specialisation hierarchy is the possibility
to work at different levels of abstraction, instead of
considering only concrete classes. The occurrence of
this AS indicates that this advantage is not exploited
properly.

– Healthy Dependency Structure: the occurrence of this
AS makes the client code depend on concrete imple-
mentations, making very hard to replace these imple-
mentations.

• Tools: AI Reviewer and Designite.
• Detection Comparison: this AS is detected in two

different ways. The first detection strategy consists in
finding the superclasses that do not have incoming depen-
dencies. Both Designite and AI Reviewer detect the smell
through this approach. However, the latter reports also
as problematic the classes that depend on the subclasses
instead of depending on the superclasses, through the
smell Supertype Bypass [29].

11. Implicit Cross-module Dependency (ICD)
• Also known as: Implicit Cross Package Depen-

dency [42], Logical Coupling [20].
• Description: Implicit Cross-module Dependency is a

history based AS defined to compute the degree of co-
changes occurring among files belonging to different
packages detected by analysing the change history. This
smell aims to captures hidden dependencies among files
belonging to different packages. Hidden dependencies
are co-change relations that can be found only in the
history of the project [23]. However, some tools focus
the attention on classes and packages instead of files.

• Violated principle:
– Healthy Dependency Structure: the highlighted correla-

tion between two, or more, classes that seem to change
together can be employed to discern a single responsi-
bility that has been split among more than one class.
Therefore, if a change in that specific responsibility
is required, all the classes need to be updated. Hence
an unhealthy chain of changes has to be followed to
correctly implement the modification.

• Tools: ARCADE, Arcan and Hotspot Detector.
• Detection Comparison: in order to accomplish this de-

tection Hotspot Detector [23] relies on a Design Structure
Matrix representation, i.e. a matrix that has the classes
names on both rows and columns. In this matrix, the cell
(k,j) contains the value concerning how many times
the file k and the file j have changed together, according
to the revision history. While in Arcan [42] the detection
is accomplished through a graph representation, where
both the elements (classes or packages) and the commits
(that are stored in the Git repository) are represented
as node and the relationships between them as edge.
Therefore the time is discretized through the Git commits.
In this situation two classes k and j are changed together
if there are two hasModified edges: (i) one from
a certain commit node to k and (ii) the other from
the same commit node to j. Instead ARCADE [30]
considers the architectural changes at two different levels:
system-level and component-level. At the system-level,
architectural change refers to the addition, removal, and
modification of components (classes and interfaces). The
detection of these changes is based on a custom metric
called a2a (architecture-to-architecture) [30], which is
defined as the distance between two architectures. At the
component-level, architectural change reflects the place-
ment of a system’s implementation-level entity inside the
architectural components (i.e. clusters) [30]. The detec-
tion of this changes is based on another custom metric
called c2c (cluster-to-cluster) [43], which is defined as
the degree of overlap between the implementation-level
entities contained within two clusters.

12. Architecture Violation (AV)
• Also known as: Specification-Implementation Viola-

tion [44], Architecture Diagram Violation [37].



• Description: Architecture Violation aims to capture
whether the intended architecture is different from its
actual implementation.

• Violated principle:
– Healthy Dependency Structure: we assumed that the

intended architecture was “healthy”, that’s because it
represents the design on which the software system was
based. Accordingly with this assumption, every depen-
dency that does not respect the intended architecture
has to be considered as not healthy.

• Tools: Arcan, Sonargraph and Structure101.
• Detection Comparison: the similar aspect of all the

detection strategies is the fact that the user has to
manually specify the intended architecture. Therefore the
main difference between the tools is related to how the
intended architecture has to be specified. In Arcan [44],
classes and packages are grouped by components and the
components are linked by constraints edges according
to the architecture specification. The user has to spec-
ify the components and the intended relations between
them. The detection consists in checking the definition
of the intended architecture, represented with rules and
constraints in the dependency graph. While in Sonargraph
the user has to write a .arc file in which he describes the
intended architecture through a custom DSL (Domain-
Specific Language)7. Finally, in Structure101 the user has
to specify the intended architecture through Architecture
Diagrams8, which allow to define dependency constraints
between arbitrary groups of code, which may or may not
follow the physical structure. This AS, which has been
already studied in the literature [45][46], is more labori-
ous to be detected from the practitioners point of view.
However, it is extremely useful to find those problems
that are domain-specific or even project-specific.

A. Others architectural smells detected by Designite

Finally, it is important to outline that Designite detects a higher
number of ASs, compared to the other tools considered in
this work. Specifically, some ASs that underline problem of
Modularization and Hierarchy that have been more specifically
described in previous works [15], [21].

We have not described them, since according to our knowl-
edge they are detected only by Designite and not by other
tools. However, we list them for completeness: Feature Con-
centration, Broken Modularization, Insufficient Modulariza-
tion, Wide Hierarchy, Deep Hierarchy, Rebellious Hierarchy,
Unfactored Hierarchy, Missing Hierarchy. We can observe that
Feature Concentration and Broken Modularization could be
seen as variants of God Component, but the definitions of these
two smells are quite different and for this reason we have not
included them in the Variant field of God Component.

7http://blog.hello2morrow.com/2016/08/how-to-organize-your-code/
8https://structure101.com/help/java/studio5/\#perspectives/

architecture-diagrams.html

Multipath
Hierarchy

Unutilized
Abstraction

Cyclic
Hierarchy

Hub-Like
Dependency

Cyclic
Dependency

Ambiguous
Interface

Implicit Cross-module
Dependency

Unstable
Dependency

Specification-Implementation
Violation

Abstraction without
Decoupling

Insufficient
Modularization

Scattered
Functionality

Missing
Hierarchy

Rebellious
Hierarchy

Unfactored 
Hierarchy

Broken
Modularization

Wide
Hierarchy

Deep  
Hierarchy

Feature
Concentration 

God
Component 

Healthy Dependency Structure

Modularity Hierarchy

Fig. 2. Architectural smells classification

V. ARCHITECTURAL SMELLS CLASSIFICATION

In Section II we briefly described the catalogues proposed
in the literature. Moreover, in Section III-C we described our
proposal of classification based on the violation of three design
principles.

With respect to the classification of Le et al. [20], the
Interface and the Concern categories include ASs that violate
the Modularity principle, which is the category chosen in
our catalogue for those smells. Furthermore, it is possible to
observe from the definitions of the categories proposed [20]
that the ASs included in the Dependency category represent
problems that affect the change-proneness of the classes and
packages. Therefore, these ASs can be considered as a subset
of the smells included in the Change category. In fact, in
our catalogue, the Healthy Dependency Structure basically
includes their two categories (Dependency and Change).

We also outline that some categories proposed by Lippert et
al. [3] are similar to the ones proposed in this paper. Indeed,
the smells in the Dependency category are closely related
to the smells that violate our Healthy Dependency Structure
principle, and the same happens for the Inheritance smells
category and our Hierarchy category. The main difference
between our classification and the one proposed by Lippert
is represented by the category related to the Size. In fact, the
smells that violate the Modulatity principle are not necessary
smells related to the Size; an example is the Cycle Dependency
AS which indicates a coupling problem but does not imply
problems in terms of size of the packages or the classes
involved. However, these two sets of smells are not completely
disjointed, as it can be seen by taking into consideration the
AS called God Component which violates the Modularity
principle and implies a problem in terms of size of the affected
class or package.

Finally, we have already extensively discussed the similarity
and the differences between our classification and the one



proposed by Ganesh et al. [21] in Sections III-C and III-B.
In Figure 2 we show a diagram that represents our AS

classification, also including the ASs mentioned in Section
IV-A, which are the ones detected only by Designite. More
work is still needed to better understand the impact of these
smells on different quality issues and to extend the detection
of the architectural problems/smells that actually negatively
can affect the software quality of the projects.

According to our classification we outline that we classify
only the AS that we introduced in our catalogue, hence only
those for which there is a tool able to detect the smell.
Obviously this classification proposal could be refined and
extended. It is always difficult to identify the best classifi-
cation, each proposal can provide useful hints according to
specific aims. Obviously when new AS will be included in
this catalogue, other improvements or new categories of the
classification could be identified.

VI. CONCLUDING REMARKS

In this work, according to our previous experiences on AS
detection and different tools experimentation ([25],[11],[12]),
we inspected different tools in order to identify which AS the
tools detect and then we deeply analysed them.

The ASs analysis has been accomplished by taking in
consideration several aspects. The most interesting ones are
the comparison of the detection strategies provided by the
tools and the AS description, that has been obtained by the
crossover of all the definitions taken in consideration by each
tool. We observed that there is a lack of standardisation that
concerns the ASs. In fact different names are often used to
indicate the same problem, therefore the fields Also known
as and Variant have been added to the AS template to deal
with this inconsistency problem.

Furthermore, we propose a catalog of ASs (Section IV),
where for each AS we reported its description, the Violated
principle to describe the issues that the ASs imply, the
tools that can be used to detect it and a description of the
detection algorithms.

According to Q1, in Table II we outline the ASs detected for
each tool that belong to the new catalogue that we proposed.
It is interesting to note that the variance between the ASs
detected is quite high, in fact most of them are detect only by
four or less tools. Of course this consideration is not applicable
to Cycle Dependency which is considered the most relevant
and common AS [3][21]. Several studies shown how Cycle
Dependency deeply affects software maintenance and it is the
one considered more critical by developers [6]. In fact, all the
tools detect this smell and the detection strategies are quite
consistent with each others.

According to Q2, in Section 4 we outlined the differences in
the detection rules/strategies adopted by each tool. We can ob-
serve that most of the AS that violate the Healthy Dependency
Structure principle are detected through the dependency graph.
Therefore, this data structure seems to be quite interesting and
it is possible that some additional inference concerning the
architectural quality assessment can be accomplished through

TABLE II
ARCHITECTURAL SMELLS DETECTED BY TOOLS

Tool name 1
CD

2
HLD

3
UD

4
CH

5
SF

6
GC

7
AwD

8
MH

9
AI

10
UA

11
ICD

12
AV

AI Reviewer X X X X X X
ARCADE X X X X X

Arcan X X X X X
Designite X X X X X X X X X
Hotspot
Detector X X X X X

Massey
Architecture

Explorer
X X X X

Sonargraph X X
STAN X

Structure 101 X X

it. While it is far more intuitive that the detection of the
ASs that violate the Hierarchy principle is based on the
hierarchy graphs. Furthermore, it is possible to notice how the
detection strategies of the AS that violate the Modularity and
the Healthy Dependency Structure principles are often related
to the concept of “concern”, i.e. a software system’s role,
responsibility or purpose [47]. We also underlined how the
detection of the concerns is accomplished in different ways,
and it is important to highlight that all the approaches could be
improved or merged together in order to reach higher values
of precision during the AS detection.

According to Q3, we proposed a classification in three
categories based on the violation of three design principles,
and we observed that some smells belong to more categories.

In Section V, we outlined the main differences and sim-
ilarity between our classification and the ones presented in
Section II.

The main issue that we have noticed with the classifications
proposed by Ganesh et al. [21] and Lippert et al. [3] is that
they include in the catalogue smells that are more close to the
concept of code smell, which correspond to the smells that
violate the Abstraction and Encapsulation principles for the
former and the smells related to the Size for the latter. While
the classes proposed by Le et al. [20] were characterised by
fuzzy boundaries, in fact we underlined how the smells belong-
ing to different categories actually share several aspects from
the violated principles point of view. Hence, our classification
has as distinguishing features the fact that is focused only on
the classification of ASs and that is more closely related to the
implementation of the AS detection. These two features allow
a more distinct and consistent classification of the smells taken
into account in the catalogue.

We aim to extend and refine the catalogue by considering
other detector tools and AS currently not included since not
available or not found. We aim also to refine the classification
or to propose other kinds of classification. In particular, it
would be interesting to identify classes of AS which impact
on specific quality attributes, such as performance and security
or other quality attributes. We aim to extend the AS template
in the catalogue by considering also possible refactoring
suggestions for each AS. Finally, we are considering to extend
this catalog to microservices smells [48] and antipatterns [49]
when the tool support to detect them will be avaialble.



REFERENCES

[1] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton, “Measure
it? manage it? ignore it? software practitioners and technical debt,” in
Joint Meeting on Foundations of Sw. Engineering, ESEC/FSE, 2015.

[2] M. Fowler, Refactoring: Improving the Design of Existing Code. Com-
ponent software series, Addison-Wesley, 1999.

[3] M. Lippert and S. Roock, Refactoring in Large Software Projects:
Performing Complex Restructurings Successfully. Wiley, May 2006.

[4] I. Macia, R. Arcoverde, A. Garcia, C. Chavez, and A. von Staa, “On
the relevance of code anomalies for identifying architecture degradation
symptoms,” in European Conference on Software Maintenance and
Reengineering, pp. 277–286, March 2012.

[5] Y. Cai and R. Kazman, “Detecting and quantifying architectural debt:
theory and practice,” in Intl. Conf. on Software Engineering, ICSE, 2017.

[6] A. Martini, F. Arcelli Fontana, A. Biaggi, and R. Roveda, “Identifying
and prioritizing architectural debt through architectural smells: a case
study in a large software company,” in Proc. of the European Conf. on
Software Architecture (ECSA), (Madrid, Spain), Springer, Sep. 2018.

[7] R. Verdecchia, I. Malavolta, and P. Lago, “Architectural technical debt
identification: The research landscape,” in International Conference on
Technical Debt, TechDebt ’18, 2018.

[8] N. Ali, S. Baker, R. O’Crowley, S. Herold, and J. Buckley, “Architec-
ture consistency: State of the practice, challenges and requirements,”
Empirical Software Engineering, vol. 23, pp. 224–258, Feb 2018.

[9] V. Lenarduzzi, A. Sillitti, and D. Taibi, “Analyzing forty years of
software maintenance models,” in 39th International Conference on
Software Engineering Companion, ICSE-C ’17, IEEE Press, 2017.

[10] V. Lenarduzzi, A. Sillitti, and D. Taibi, “A survey on code analysis
tools for software maintenance prediction,” in Software Engineering for
Defence Applications SEDA, 2019.

[11] F. Arcelli Fontana, R. Roveda, M. Zanoni, C. Raibulet, and R. Capilla,
“An experience report on detecting and repairing software architecture
erosion,” in 2016 13th Working IEEE/IFIP Conference on Software
Architecture (WICSA), pp. 21–30, April 2016.

[12] F. Arcelli Fontana, R. Roveda, S. Vittori, A. Metelli, S. Saldarini, and
F. Mazzei, “On evaluating the impact of the refactoring of architectural
problems on software quality,” in Proceedings of the Scientific Workshop
Proc. of XP2016, Edinburgh, Scotland, UK, May 24, 2016, p. 21, 2016.

[13] F. A. Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic
detection of instability architectural smells,” in 2016 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2016,
Raleigh, NC, USA, October 2-7, 2016, pp. 433–437, 2016.

[14] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. Wiley Publishing, 2009.

[15] S. Ganesh, T. Sharma, and G. Suryanarayana, “Towards a principle-
based classification of structural design smells,” Journal of Object
Technology, vol. 12, pp. 1:1–29, June 2013.

[16] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158–173, 2018.

[17] F. A. Fontana, P. Braione, and M. Zanoni, “Automatic detection of
bad smells in code: An experimental assessment,” Journal of Object
Technology, vol. 11, no. 2, pp. 5: 1–38, 2012.

[18] M. V. Mäntylä and C. Lassenius, “Subjective evaluation of software
evolvability using code smells: An empirical study,” Empirical Software
Engineering, vol. 11, pp. 395–431, Sep 2006.

[19] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Toward a
catalogue of architectural bad smells,” in International Conference on the
Quality of Software Architectures: Architectures for Adaptive Software
Systems, QoSA ’09, 2009.

[20] D. M. Le, C. Carrillo, R. Capilla, and N. Medvidovic, “Relating
architectural decay and sustainability of software systems,” in Working
Conference on Software Architecture (WICSA), pp. 178–181, 2016.

[21] G. S. Girish Suryanarayana and T. Sharma, Refactoring for Software
Design Smells: Managing Technical Debt. Burlington, Massachusetts,
USA: Morgan Kaufmann, 2014.

[22] W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
John Wiley & Sons, Inc., 1st ed., 1998.

[24] C. Baldwin and K. Clark, Design Rules Volume I: The Power of
Modularity. MIT Press, 2000.

[23] R. Mo, Y. Cai, R. Kazman, and L. Xiao, “Hotspot patterns: The formal
definition and automatic detection of architecture smells,” in Working
Conf. on Software Architecture, 2015.

[25] F. A. Fontana, I. Pigazzini, R. Roveda, D. A. Tamburri, M. Zanoni, and
E. D. Nitto, “Arcan: A tool for architectural smells detection,” in 2017
IEEE International Conference on Software Architecture Workshops,
Gothenburg, Sweden, April 5-7, 2017, pp. 282–285, 2017.

[26] CAST c©, “CAST.” https://www.castsoftware.com/, accessed 2019-01.
[27] I. Macia, R. Arcoverde, E. Cirilo, A. Garcia, and A. von Staa, “Sup-

porting the identification of architecturally-relevant code anomalies,” in
International Conference on Software Maintenance (ICSM), 2012.

[28] L. Xiao, Y. Cai, and R. Kazman, “Titan: A toolset that connects software
architecture with quality analysis,” in Intern. Symposium on Foundations
of Software Engineering, FSE 2014, pp. 763–766, 2014.

[29] Logarix, “AI Reviewer.” www.aireviewer.com, accessed 2019-01.
[30] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and

N. Medvidovic, “An empirical study of architectural change in open-
source software systems,” in Working Conference on Mining Software
Repositories, pp. 235–245, May 2015.

[31] ESSeRE Lab, Università degli Studi di Milano Bicocca, “Arcan.” http:
//essere.disco.unimib.it/wiki/arcan, accessed 2019-01.

[32] T. Sharma, P. Mishra and R. Tiwari, “Designite.” www.designite-tools.
com, accessed 2019-01.

[33] Jens Dietrich, Massey University, “Massey Architecture Explorer.” http:
//xplrarc.massey.ac.nz/, accessed 2019-01.

[34] J. Dietrich, “Upload your program, share your model,” in Proceedings of
the 3rd Annual Conference on Systems, Programming, and Applications:
Software for Humanity, SPLASH ’12, 2012.

[35] hello2morrow, “Sonargraph.” www.hello2morrow.com, accessed 2019.
[36] Bugan IT Consulting UG, “Structural Analysis for Java.” http://stan4j.

com/, accessed 2019-01.
[37] Headway Software Technologies Ltd., “Structure101.” http://

structure101.com/, accessed 2019-01.
[38] R. C. Martin, “Design principles and design patterns,” Object Mentor,

vol. 1, no. 34, p. 597, 2000.
[39] J. Dietrich, C. McCartin, E. Tempero, and S. M. A. Shah, “On the

existence of high-impact refactoring opportunities in programs,” in
Australasian Computer Science Conference, ACSC ’12, 2012.

[40] F. Arcelli Fontana and S. Maggioni, “Metrics and antipatterns for
software quality evaluation,” in Proceedings of the 34th IEEE Software
Engineering Workshop (SEW 2011), (Limerick, Ireland), pp. 48–56,
IEEE, June 2011.

[41] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai,
“Enhancing architectural recovery using concerns,” in International
Conference on Automated Software Engineering (ASE 2011), Nov 2011.

[42] R. Roveda, F. Arcelli Fontana, I. Pigazzini, and M. Zanoni, “Towards an
architectural debt index,” in Proceeding Euromicro Conference, SEAA-
TD, session on Technical Debt, Prague, SEaTeD ’18, 2018.

[43] J. Garcia, I. Ivkovic, and N. Medvidovic, “A comparative analysis of
software architecture recovery techniques,” in International Conference
on Automated Software Engineering, ASE’13, 2013.

[44] A. Biaggi, F. Arcelli Fontana, and R. Roveda, “An architectural smells
detection tool for c and c++ projects,” in Proceeding Euromicro Confer-
ence, SEAA-TD, session on Technical Debt, Prague, SEaTeD ’18, 2018.

[45] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software reflexion
models: bridging the gap between design and implementation,” IEEE
Transactions on Software Engineering, vol. 27, pp. 364–380, April 2001.

[46] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-oriented software
architecture, on patterns and pattern languages, vol. 5. John wiley &
sons, 2007.

[47] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai,
“Enhancing architectural recovery using concerns,” in International
Conference on Automated Software Engineering (ASE 2011), 2011.

[48] D. Taibi and V. Lenarduzzi, “On the definition of microservice bad
smells,” IEEE Software, vol. 35, no. 3, pp. 56–62, 2018.

[49] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for mi-
croservices: a systematic mapping study,” 8th International Conference
on Cloud Computing and Services Science (CLOSER2018), 2018.


