
QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 1 of 39

QualiPSo

Quality Platform for Open Source Software

IST- FP6-IP-034763

Deliverable A5.D1.5.6

How the trustworthiness of OSS products and artifacts can be
assessed and predicted (v3)

Luigi Lavazza
Sandro Morasca

Davide Taibi
Davide Tosi

Due date of deliverable: 31/10/2010

Actual submission date: 31/01/2011

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.
This work is partially funded by EU under the grant of IST-FP6-034763.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 2 of 39

Change History

Version Date Status Author
(Partner)

Description

2.0 31/10/2009 final INS Final deliverable. It summarizes
the contents of wd 5.6.1 (v2) and
wd 5.6.2 (v2).

3.0 31/01/2011 final INS Final deliverable. It summarizes
the whole results of WP5.6.

What is new

This is the third and final release of this document. The previous version
illustrated the results of the first round of experimentations carried out in WP
5.6, including the collection of data –both subjective evaluations and objective
measures– and their analysis.

This release of the document differs from the previous releases, in that it reports
a summary of the final and complete results of the analysis of data concerning
OSS trustworthiness and measurable characteristics that have been collected
throughout the project.

As usual, this report summarizes the results achieved over the entire duration of
the QualiPSo project. The details are in the corresponding working documents
[12] [13].

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 3 of 39

EXECUTIVE SUMMARY FOR DELIVERABLE A5.D1.5.6

Work organization

The work in workpackage WP5.6 is organized into two tasks:

− Task 5.6.1: Experimentation

− Task 5.3.2: Model building.

Both Experimentation and Model building have been performed in two rounds.
This document accounts for the results obtained after the second and final
round.

In Task 5.6.1, the techniques and tools defined in Activity A5 are used for
experimentation purposes. Specifically, we used the trustworthiness factors
identified in WP5.3, the test approaches, suites, and benchmarks identified in
WP5.4, and the tools developed, customized, and integrated in WP5.5.

The main result generated by the experimentation of Task 5.6.1 consists of the
data on the trustworthiness of the OSS products examined during the
experimentations [12]. These data are the input to Task 5.6.2, which analyzed
them to find out whether the factors identified are actually influential on the
trustworthiness of the OSS products and artefacts. The goal of Task 5.6.2 was
to build a quantitative model of software trustworthiness [13], to explain how the
trustworthiness perceived by OSS users depends on the actual (mostly
objectively assessable) qualities of the OSS products. Note that we consider
different types of “users,” namely all the professional figures that deal with an
OSS product, including developers, integrators, system administrators, product
managers, end users, etc.

The produced models will also allow users to estimate how trustworthy a given
OSS product is likely to be, on the basis of its measurable characteristics.

Method

The main instrument for the experimentation is represented by empirical studies
and measurement.

According to the indications from WP5.3, the experimentation addressed two
aspects of trustworthiness: users’ perception of trustworthiness and the
contribution to trustworthiness from the intrinsic characteristics of the software
products and projects. The former was assessed by collecting evaluations from
users; the latter was measured.

Users evaluations were collected by means of questionnaires that the users
filled out on paper while one of the authors was present to answer possible
questions.

The measurements of the OSS product were performed by using the tools
identified, produced, or customized in WP5.5. The collected information was
stored in a specifically designed repository, from which it is retrieved for
analysis purposes.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 4 of 39

The collected data were analyzed to find out whether the factors identified are
actually influential on the trustworthiness of the OSS products and artefacts,
and to derive quantitative models of such dependencies.

A variety of different statistical techniques were used for data analysis, based
on the specific nature of the independent and dependent variables involved and
the objectives of the data analysis. In particular, logistic regression was largely
used to correlate trustworthiness with objectively measured qualities of OSS
products.

Results

We were able to find several statistically significant correlational models for the
prediction of users’ perceptions of a number of user-relevant qualities such as
reliability, usability, portability, functionality, interoperability, security,
performance, usefulness of the developer community, documentation quality,
and overall trustworthiness. We call the ensemble of these correlational models
MOSST (Model of Open Source Software Trustworthiness). Thus, we were able
to find at least one quantitative model for predicting every subjective quality for
which we collected data from users by means of questionnaires. The models in
MOSST are built by using data on a number of objective measures on OSS
products and projects, like modularity, defect density, size, number of
downloads, to predict the user-relevant qualities. .

As we focused on Java and C++ products, we derived three classes of
prediction models:

• models for Java programs’ perceived qualities with the objective measures
produced by a collection of QualiPSo tools, including MacXim (for both
object-oriented measures and Elementary Code Assessment rule
violations), StatSVN (for measures concerning software configurations and
versioning activities) and OSLC (for measures concerning licensing);

• models for C++ programs, which were obtained considering the code
measures produced by Kalibro;

• models for Java and C++ programs’ perceived qualities with the objective
measures produced by the objective measures produced by MacXim and
Kalibro. Since java and C++ are subject to different measures, only the
measures that are common to both languages were considered;

Novelty and use of the results

MOSST is a set of quantitative models that account for the dependence of the
perceivable qualities of OSS on objectively observable characteristics of OSS
products and projects. These models can be used by:

• end-users and developers that would like to (re)use existing OSS
products and components, to evaluate the level of trustworthiness,
reliability, usability and several other qualities of these OSS products that
can be expected based on objectively observable characteristics of OSS
product and projects

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 5 of 39

• the developers of OSS products, who can set code quality targets based
on the level of trustworthiness, reliability, usability and several other
qualities they want to achieve.

Unlike existing quality models for OSS, MOSST is built by means of a
theoretically valid approach and solid statistical techniques that use evidence
coming from OSS stakeholders and the analysis of actual OSS products and
projects. We collected data from 694 OSS stakeholders and obtained 4101
evaluations on 22 Java and 22 C++ programs. This has allowed us to build
statistically valid models to quantitatively predict the impact of objectively
observable characteristics of OSS products and projects on qualities of practical
interest, instead of collecting only data on objectively observable qualities of the
code that may only be conjectured to influence qualities of practical interest.

Also, this is one of the few studies that address and build models for different
languages, albeit both belonging to the category of Object-Oriented languages,
to start building from the knowledge acquired on programs written in individual
languages and find out common trends.

Project planning and control

According to the Description of Work, the deliverables and working documents
due by WP5.6 - Experimentation and model building in the final part of the
QualiPSo project are listed in Table 1 and Table 2, respectively.

Table 1. Due deliverables

Deliverable
No

Deliverable title Delivery
date

Nature Dissemi-
nation

A5.D1.5.6 How the trustworthiness of OSS products
and artifacts can be assessed and
predicted (v 3)

48 R PU

Table 2. Due working documents

Working
Doc. No

Working Document title Delivery
date

Nature Dissemi-
nation

wd5.6.1 Experimentation on the trustworthiness of
Open Source Software (version 3)

46 R PU

wd5.6.2 Trustworthiness models for Open Source
Software (version 3)

48 R PU

Both the deliverable and the working documents were released at the end of
month M51.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 6 of 39

Document Information
IST Project
Number

FP6 – 034763 Acronym QualiPSo

Full title Quality Platform for Open Source Software

Project URL http://www.qualipso.org

Document URL

EU Project officer Michel Lacroix

Deliverable Number A5.D1.5.6
QualiPSo

Title A5.D1.5.6: Report: How the trustworthiness of
OSS products and artifacts can be assessed
and predicted (v3)

Work package Number 5.6 Title Experimentation and model building

Activity Number A5 Title Trustworthy Results

Date of delivery Contractual 31/10/2010 Actual 31/01/2011

Status final �

Nature Report � Demonstrator � Other �

Dissemination
Level

Public � Consortium �

Abstract
(for
dissemination)

The quality of Open Source Software (OSS) is much debated, since OSS is
used by a continuously growing number of people and organizations.
However, the discussions on the quality of OSS are usually based on
opinions, feelings, personal preferences, and sometimes even political ideas.
This document reports on an analysis of the perceived quality of OSS and the
objectively measurable factors that may influence it. Specifically, the users’
and developers’ evaluations of the trustworthiness of OSS products (and of
related qualities, like reliability and functionality) were collected and correlated
to objective code measures. The result is a set of quantitative models that
account for the dependence of the perceivable qualities of OSS on objectively
observable qualities of the code. The ensemble of these models is called
MOSST (Model of Open Source Software Trustworthiness). MOSST can be
used by: 1) end-users and developers that would like to reuse existing OSS
products and components, to evaluate the level of trustworthiness, reliability,
usability and several other qualities of these OSS products that can be
expected based on objectively observable characteristics of OSS product and
projects; 2) the developers of OSS products, who can set code quality targets
based on the level of trustworthiness, reliability, usability and several other
qualities they want to achieve.

Keywords Trustworthiness, quality model, GQM, trustworthiness evaluation, empirical
studies, measurement.

Authors
(Partner)

Luigi Lavazza, Sandro Morasca, Davide Taibi, Davide Tosi
(University of Insubria)

Responsible
Author

Luigi Lavazza Email luigi.lavazza@uninsubria.it

Partner INS Phone +39-0332-219830

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 7 of 39

 TABLE OF CONTENTS

EXECUTIVE SUMMARY FOR DELIVERABLE A5.D1.5.6 .. 3

WORK ORGANIZATION .. 3
METHOD .. 3
RESULTS .. 4
NOVELTY AND USE OF THE RESULTS .. 4
PROJECT PLANNING AND CONTROL .. 5

TABLE OF CONTENTS.. 7

1 THE BIG PICTURE ... 8

2 THE DATA COLLECTION ... 10

2.1 THE OSS PRODUCTS BEING ANALYSED ... 10
2.2 REFINEMENT OF THE MEASUREMENT PLANS.. 10
2.3 THE DATA REPOSITORY .. 10
2.4 INSTRUMENTATION.. 11
2.5 MEASUREMENT AND DATA COLLECTION ... 12

3 DATA ANALYSIS .. 13

3.1 ANALYSIS PROCEDURES ... 13
3.2 THE DATASET .. 15
3.3 OUTCOMES FROM ANALYSIS .. 16
3.4 RESULTS AND HOW TO USE THEM ... 17
3.5 IMPROVEMENTS OVER THE STATE OF THE ART ... 19

4 SAMPLE MODELS .. 21

4.1 TRUSTWORTHINESS ... 21
4.2 RELIABILITY ... 23
4.3 USABILITY .. 24
4.4 PORTABILITY .. 26
4.5 HOW WELL FUNCTIONAL REQUIREMENTS ARE SATISFIED ... 27
4.6 INTEROPERABILITY .. 28
4.7 SECURITY ... 29
4.8 PERFORMANCE (IN TERMS OF SPEED) .. 30
4.9 USEFULNESS OF THE PRODUCT DEVELOPER COMMUNITY ... 31
4.10 DOCUMENTATION QUALITY .. 32
4.11 TRUSTWORTHINESS WITH RESPECT TO NON OPEN SOURCE (CLOSED SOURCE) PRODUCTS 33
4.12 TRUSTWORTHINESS WITH RESPECT TO OPEN SOURCE PRODUCTS .. 34

5 PUBLICATIONS .. 36

6 CONCLUSIONS ... 37

7 REFERENCES .. 38

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 8 of 39

1 THE BIG PICTURE

Here, we summarize the work carried out in WP 5.6.

Figure 1 reports the conceptual model of the entities involved in the work. We
start with a GQM measurement plan –defined in WP5.3– whose execution will
lead to the construction of the QualiPSo model of trustworthiness. The
execution of the GQM plan involves two phases: the actual measurement and
the analysis of the collected data (details of these activities are reported in in
the various versions of WD 5.6.1 and WD 5.6.2).

The GQM plan involves two types of measures: objective measures, which are
meant to quantify the intrinsic, objective properties of the OSS products, and
subjective measures (called “subjective trustworthiness evaluations” in Figure
1), which are meant to represent how users (subjectively) evaluate the
trustworthiness of OSS products.

The actual measures corresponding to the GQM measures definitions are
collected and stored in a repository.

There is a set of measures for every considered OSS product.

The analysis phase that is described in WD 5.6.2 aims at correlating the
objective, measurable properties of OSS products (like modularity, defect
density, size, etc.) with their properties (like reliability, security, etc.) that are
relevant for the users. Trustworthiness is the ensemble of the subjective
properties.

TrustworthinessGQMplan

OSS_product

ObejctiveProperties

TrustworthinessPerceptionUser

ObjectiveMetric
SubjectiveTrustworthinessEvaluations

ObjectiveMeasure
SubjectiveMeasure

OSS_products_to_be_evaluated

QualiPSoTrustworthinessModel

Measures DB

Figure 1. Conceptual model of the items involved in WP5.6.

A high level view of the process carried out in WP5.6 is reported in Figure 2. As
already mentioned, the GQM plan is defined in WP 5.3. The GQM plan and the
list of examined projects drove the collection of –subjective and objective– data.
The collection of data was largely supported by tools (namely, those developed

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 9 of 39

in WP5.5) but not completely automated, since some of the required information
can be safely retrieved only manually.

The collected data are analyzed and quantitative models of trustworthiness and
other user-relevant properties are derived. The data analysis activity also
provided suggestions about the refinement, extension or reduction of the GQM
plan. In fact, the work described in Figure 2 was carried out in two subsequent
phases.

TrustworthinessMeasurementPlanDefinition

TrustworthinessGQMplan [Defined]

ObjectiveDataCollection
SubjectiveDataCollection

DataAnalysis
Here correlations between subjective and

ojective characteristics are sough

ObjectiveMeasure [Collected]

SubjectiveMeasure [ObjectFlowState1]

OSS_products_to_be_evaluated [Defined]

This activity is largely

(but not completely) automated,

i.e., it is performed using tools

This activity could be automated

(e.g., via on-line data collection)

but takes a long time.

It is sort of asynchronous wrt the

rest of the process.

QualiPSoTrustworthinessModel [Tentative]

This model summarizes the knowledge

about the cause-effect relationships

existing among OSS prodict properties

and between such properties and

trustworthiness perspectives

Figure 2. Workflow of activities in WP5.6.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 10 of 39

2 THE DATA COLLECTION

2.1 The OSS products being analysed

The first round of experiments was performed on a set of 44 OSS products, of
which 22 written in Java and 22 written in C++.

In the first round of experiments the subjective evaluations by users were
collected about the whole set of 44 projects, while the analysis was performed
only on the Java products, since the tools for analysing C++ code were still
under development.

In the second round of experiments the analysis was performed on the whole
set of products, and considering all the subjective evaluations collected.

The list of products and the selection criteria, as well as the questionnaire, are
reported in [12].

2.2 Refinement of the measurement plans

This activity concerned the refinement of the GQM plan defined in WP5.3, to
assure that the measures’ definitions match the characteristics of the products
to be evaluated.

Some of the measures defined in the GQM plan [8][9] had to be refined to
clarify the details that were necessary for selecting the proper tools and defining
the actual measurements performed in the experimentation.

The products to be evaluated were duly taken into account, since their
characteristics can affect the precise (e.g., operational) definition of measures.

The quality factors affecting user-relevant qualities have been refined or
otherwise reviewed.

The corresponding updated definitions are reported in the appendix of [10].

2.3 The data repository

The data collected by means of measurements, interviews, from other data
sources, etc., are stored in a well-structured, persistent repository that supports
the analysis activities to be performed in the context of Task 5.6.2.

The repository is integrated –at the data level– with the measurement and data
collection tools. The repository receives the data from the various tools and
makes them available to the analysis activities and to the reporting tool
(Spago4Q), as shown in Figure 3.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 11 of 39

Measures

Statistical analysis

QualiPSo tools

Questionnaires

Figure 3. Role of the measures DB in WP5.6.

The repository is based on MySQL relational DBMS.

2.4 Instrumentation

This activity dealt with choosing the proper tools to perform the measurements
and the analysis of data.

All the tools developed, customized or otherwise delivered by WP5.5 are used.
However, we also use ‘third party’ OSS tools that match our measurement plan.
The main tools used are:

• MacXim (incorporating also Checkstyle and PMD)

• Kalibro

• StatSVN/StatCVS

• OSLC

The collection of the subjective evaluations of the various aspects of
trustworthiness by users was carried out mainly via a questionnaire that is
reported in the appendix of [12].

For the analysis of data we use R [14], the statistical analysis tool that was
already used in WP5.1. R is a GPL-licensed tool that uses a language and an
environment for statistical computing and graphics that is reasonably easy to
use and comes with a huge repository packages for analysis, database
integration, etc. (see the Comprehensive R Archive Network at http://cran.r-
project.org/). Thus, R is programmable. To carry out the analysis reported here,
we wrote R code, which has been released as part of the QualiPSo open
software tools developed within WP5.5.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 12 of 39

2.5 Measurement and data collection

The objective of data collection activities is to fulfil the GQM plan, by collecting
all the defined measures. Different methods have been used for the different
types of measures. Among others, we used the following techniques:

• Data collection from users, concerning their evaluation of (the various
aspects of) trustworthiness was performed by means of a questionnaire
concerning 22 Java programs and 22 C++ programs. Up to the end of the
data collection reported here (early October 2010), 694 questionnaires were
collected. Overall, they account for 4101 evaluations (of which 1357 for Java
projects and 2744 for C++ projects).

• The chosen projects were measured (i.e., their characteristics were
objectively evaluated) using the tools developed in WP5.5.

• Dynamic measurement was performed along the lines defined in WP5.4.

The details of the measurements are available in [12].

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 13 of 39

3 DATA ANALYSIS

The analysis presented here was carried out on the data collected by Task
5.6.1 and stored in the measurement repository. The analyses reported in this
document are based on the evaluations and measures collected up to October
2010.

To find relationships that link the trustworthiness of the OSS products and
artefacts with the objectively measurable characteristics and qualities of
software, we mainly used binary logistic regression. Binary logistic regression is
a statistical technique that is used when the dependent variable is dichotomous
(i.e., it takes two values: in our case the fact that a user is satisfied or
unsatisfied with a product with respect to a specified quality) and the
independent variables are of any type. Binary logistic regression estimates the
probability that the dependent variable assumes one of the two values. In our
case, therefore, we estimate the probability that a user is satisfied with a
product as for a specified quality. This probability indicates the percentage of
users that are satisfied with the product with respect to that quality.

Each of our dependent variables represents the subjective evaluations of users
concerning a specific quality. Every quality evaluation is a dichotomy in the
sense that users’ evaluations are divided into two sets: the one containing
positive evaluations and the one containing negative evaluations. Evaluations
are classified as positive or negative with respect to a threshold, set as
explained in Section 3.2.

3.1 Analysis procedures

As mentioned above, and described in the working documents and deliverables
of WP5.6, the main goal of this task is to correlate subjective user evaluations
with objective software measures.

All subjective evaluations are expressed by each user in an ordinal scale with
grades from zero to six.

We interviewed several users about a given quality of a given OSS product, so
we need to reduce this amount of data to a single number that can be
effectively treated. To this end, we establish a threshold that represents an
acceptable quality level and then partition the population of the respondents into
two datasets: one containing the users that rated the product below the
threshold, and one containing the users that rated the product above the
threshold.

More formally, given an OSS product P and a quality Q, we start from the

multiset1 of evaluations E = {ei}, where i ∈ [1..N] indicates the i-th user, N is the
number of interviewed users, and ei is the rating of the quality Q of product P
according to the i-th user.

1
 A multiset or bag is a set with repetitions. This clearly accounts for the fact that multiple users

can assign a given quality of a given product the same grade.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 14 of 39

By establishing a threshold T, we can partition E into Es and Eu, the multisets of
satisfied and unsatisfied users, respectively:

Es = {x | x ∈ E ∧ x > T}

Eu = {x | x ∈ E ∧ x ≤ T}

Now, we are not interested in distinguishing user identities; rather, we are
interested in how many users are satisfied and how many are unsatisfied. To
this end, we consider the pairs < |Es|, |Eu| > of the cardinalities of Es and Eu.

Of course, we have a pair < |Es|, |Eu| > for every subjective quality defined in the
GQM plan [8][9][10] and actually collected [12]. For every quality we have thus
a pair, which can be interpreted as a percentage of satisfaction (|Es|/(|Eu|+|Es|) =
|Es|/N).

Since we performed the evaluation of several OSS products, we actually have a
vector of pairs and percentages:

Ve = <Pj>, where Pj is the pair < |Es|, |Eu| > concerning the j-th OSS product.

Actually we have not just one vector, but several: one for each investigated
quality. Similarly, we have a vector for each objective quality that has been
measured.

The analysis consists in correlating a vector of subjective evaluations with one
or more vectors of objective measures, in order to evaluate to what extent the
qualities perceived by the users depend on the internal, objectively measurable
qualities. For instance, we correlated Trustworthiness to the measures of size
and complexity, as well as reliability to the measures of modularity.

The analysis was based on binary logistic regression. Binary (or binomial)
logistic regression is a form of regression which is used when the dependent
variable is a dichotomy and the independent variables are of any type.

Logistic regression has many analogies to linear regression. Unlike the latter,
however, logistic regression does not assume linearity of relationship between
the independent variables and the dependent, does not require normally
distributed variables, does not assume homoscedasticity, and in general has
less stringent requirements. It does, however, require that observations be
independent and that the independent variables be linearly related to the logit of
the dependent.

The logistic curve, illustrated in Figure 4, is better for modeling binary
dependent variables coded 0 or 1 because it comes closer to hugging the y=0
and y=1 points on the y axis. Even more, the logistic function is bounded by 0
and 1, whereas the linear regression function may predict values above 1 and
below 0.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 15 of 39

Figure 4. Logistic vs. linear regression curves.

Additional information on the logistic regression is reported in the appendix of
wd 5.6.2.

We tested all the possible correlations, i.e., all the combinations y=f(X), where y
is a subjective evaluation and X is an array of measures. Of these potential
correlations, only the statistically significant ones were selected as valid models.

It must be noted that using multiple independent variables leads to the danger
of “overfitting.” Since the number of OSS products we analyzed is somewhat
limited, we used up to three independent variables in every correlation.
However, when more projects are analyzed, it will be possible to study models
with a larger number of independent variables (even though this does not
appear necessary, as several statistically valid and accurate models are
currently available for each of the considered qualities).

3.2 The dataset

The analysis reported here is based on the subjective evaluations about OSS
collected throughout the QualiPSo project.

For every subjective evaluation, we used the numbers of satisfied and not
satisfied users. The threshold is 4, i.e., users who ranked a product > 4 were
counted as “satisfied,” while those who ranked it ≤ 4 were counted as “not
satisfied.” We chose to set the threshold to 4 because in this way we are able to
distinguish really satisfied users from other users and also because in the set of
responses really few users gave a 1 or 2 score to a product for some quality.
So, using a lower threshold would have implied an increased level of general
satisfaction for all products, thus making it hard to derive models that are
practically useful to say how good a product is with respect to a given quality.

For each product we have a variable number of users’ evaluations, since most
popular products like Eclipse or MySQL tend to be evaluated by more users

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 16 of 39

than products –like Weka or Tapestry– that are or interest to a smaller, often
specialized, set of users.

Moreover, some users reported a low familiarity with the products in the
questionnaires.

Accordingly, we had to select the data to be used for the analysis: only products
for which no less than six subjective evaluations expressed by users having a
good familiarity with product were considered in the analysis. As a
consequence, every analysis involved 16 to 19 products, depending on the
specific quality being considered. As a matter of fact, users were invited to
provide their own evaluations only for those qualities of a product about which
they felt confident in their own judgment. Thus, we had an uneven number of
evaluations per quality and per product.

3.3 Outcomes from analysis

The complete and detailed results of the performed analysis are reported in
[13]. In that document, every correlation found is illustrated by means of a set of
results from the statistical analysis as illustrated in Figure 5.

 Reliability vs. LCOM , Num. interfaces
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.3718709280 0.3043314130 4.507819 6.549741e-06
x1 -0.0007125015 0.0002546989 -2.797426 5.151154e-03
x2 -0.0014663310 0.0005899464 -2.485533 1.293577e-02
R2log = 0.9215926
Excluded as outliers: Eclipse HttpUnit Ant Struts (4/16)
MMRE = 19.73220
Pred(25) = 75
Error range = [-15.67529 .. 131.7843]

Figure 5. Data about a correlation.

The first line indicates the statistical correlation being reported: the correlation
reported in Figure 5 concerns reliability vs. LCOM (the Lack of COhesion
between Methods measure) and the number of interfaces.

The following lines reports in the first column the values of the coefficients of the
correlation (where x1 and x2 indicate the independent variables as reported in
the title, thus x1 = LCOM and x2 = Num. interfaces). Therefore,

and .

The column ‘Pr(>|z|)’ indicates the significance of the coefficients: all the values,
except the one concerning the intercept, should be < 0.05. In fact, we adopt
0.05 as a threshold, as usually done in empirical software engineering.

Note that the sign of the coefficient also provides the indication of whether the
dependent variable increases or decreases when an independent variable
increases. For instance, Figure 5 shows that LCOM has a negative coefficient,
so the probability of a product to be considered reliable decreases when LCOM
increases. The same applies to Num. Interfaces. In the next section, a Logistic
Regression model is shown to predict Portability based on NOC (the Number of

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 17 of 39

Children of a class in a inheritance hierarchy). The sign of the coefficient of
NOC in the Logistic Regression model is positive so the probability that a
product is believed to be portable increases when NOC increases, as Figure 6
shows.

R2log is the value of R2
log, a measure of goodness of fit defined in [18] that

ranges between 0 and 1: the higher R2
log, the higher the effect of the model’s

explanatory variables, the more accurate the model.

The next line reports the products that were excluded from the analysis, having
been considered outliers. In our example, 4 products out of 17 (namely, Eclipse,
HttpUnit, Ant and Struts) were excluded as outliers. The presence of outliers is
a common problem that arises when building correlational models. An outlier is
a data point that lies far from the bulk of the data points and which may overly
and unduly influence the regression model. We identified and excluded outliers
based on their Cook’s distance [19].

The last three lines give some indication on the precision of the fitting. MMRE
Mean Magnitude of Relative Error) indicates what is the average absolute
percent error: values below 25% are generally considered good. Pred(25)

indicates how many products are within ±25% error with respect to the
regression line. Finally, the error range indicates the minimum and maximum
distance between observed values and estimated ones (always in percentage
terms).

3.4 Results and how to use them

MOSST is the main result of the activity reported in this document. MOSST
does not only show that relationships exist between trustworthiness (and other
perceived qualities) and objectively measurable characteristics of the OSS. A
really important point is that MOSST quantifies the nature of these relationships.

The quantitative knowledge of the relationships can be beneficial to both the
users and the developers of OSS:

• The users can rely on the measures of the software in order to estimate to
what extent a given OSS product can be expected to satisfy a given quality
aspect (e.g., reliability). In this way, the potential users can get a rough
evaluation of OSS without the need to even try the product.

• Developers can derive from their client satisfaction targets (i.e. to what
extent users will be satisfied with a given quality of their OSS product) into
threshold of quality measures that must be met by their code.

The procedure for using the quantitative knowledge of relations is exemplified
below, considering the dependency of Portability on the average number of
children of classes in Java products. The equation that describes the correlation
found is the following:

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 18 of 39

For a user that would like to evaluate the portability of a Java product based on
other users’ perceptions, the procedure is simple: if the average number of
children per class of the Java product is 0.8 then the user can expect that the
product’s portability will be satisfactory with probability around 60%, i.e., 60% of
the users will be satisfied with the product’s portability. In fact

, .

Instead, if the average number of children per class is 1.4, then the user can
expect that the product’s portability will be satisfactory with probability around

65%. In fact, .

Figure 6 shows the relation between portability and NOC, highlighting the
values of portability for NOS = 0.8 and NOC = 1.4.

Figure 6. Portability vs. NOC (number of children) for Java products.

For developers, the procedure is reversed, since they have to establish what is
the minimum value of NOC to achieve a target portability probability. By solving
for NOC the equation that describes the relation between portability and NOC
we get:

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 19 of 39

If the goal of the developer is that the product is considered trustworthy by over
55% of the users, he/she must aim at an average NOC greater than 0.44. In

fact, .

In this sense, NOC=0.44 can be seen as a “threshold” below which developers
should not take their code.

Other thresholds may be established too, by users and developers alike. For
instance, one may decide that a product’s quality is

• “good” if the product’s portability is expected to be rated satisfactory by at
least 75% of users

• “acceptable” if the product’s portability is expected to be rated
satisfactory by 25% to 75% of users

• “poor” if the product’s portability is expected to be rated satisfactory by at
most 25% of users.

By solving the logistic regression formula for the value of the objectively
measurable characteristic and substituting 0.75 and 0.25, one obtains the
threshold values for the objectively measurable characteristic that correspond to
the 75% and 25% values of satisfied users, so one finds the thresholds on the
range of the objectively measurable characteristic. For instance, these
thresholds can be displayed by Spago4Q, which is used for result visualization
in our tool set.

In conclusion, our analyses let users and developers perform the needed
evaluations on the basis of clear quantitative data.

3.5 Improvements over the state of the art

We also would like to point out that we used the theoretically sound way to build
models belonging to MOSST, which are relevant to developers and users (e.g.,
reliability, usability, portability, etc. as listed in Section 0). All of these
characteristics are classified as “external” software qualities, as opposed to
“internal” software quality in the experimental software engineering literature
[20]:

• an “internal” quality of a software product can be quantified based on the
knowledge of the software product alone. For instance, one can measure
software size based only on the source code. An “internal” software
quality has no practical interest per se, but it can be used to predict some
interesting product (e.g., fault proneness) or process (e.g., effort) quality.
“Internal” software qualities are usually easy to measure, possibly with
the aid of automated tools.

• an “external” quality of a software product can only be quantified based
on the knowledge of the software product and additional information. For

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 20 of 39

instance, one cannot measure software usability based only on the
source code or its user interface, as usability also depends on the skills
and knowledge of specific users and the way they interact with the
product. “External” software qualities are practically relevant, though it is
commonly said that they are usually very hard to measure (and even
define).

However, the distinction between “internal” and “external” qualities is entirely
peculiar to the software measurement literature. No such distinction exists in the
authoritative general references on measurement [21][22][23]. So, this
distinction between “internal” and “external” qualities in software engineering
literature can be only accepted as an illustration convention used to explain the
differences in the nature of software qualities and somehow organize them in
categories.

At any rate, the authoritative, foundational work on measurement already shows
how these “external” qualities can be measured. Technically, this is carried out
via so-called “Probability Representations.” From a practical point of view, this
amounts to measuring “external” qualities via prediction models based on
“internal” qualities, as we have shown elsewhere [24]and done in our work here,
as MOSST is the ensemble of a set of prediction models.

Thus, our approach is different from other approaches that have been used in
the quantification of qualities of OSS, like OpenBRR [26], QSOS [25], OSMM
[27], OpenBQR [28], which are typically based on weighted sums of directly
measurable characteristics. However, these models are not theoretically valid,
nor are they validatable, as they provide a definition of a quality. From a
practical point of view, these models do not provide any reliable indication on
whether the directly measurable characteristics they use actually influence the
qualities of interest, nor on the values for the weights of the directly measurable
characteristics (a discussion on the use of weighted sums in the definition of
measures is in [29]). So, the choice of directly measurable characteristics and
the values used for their weights are fairly subjective, and, as a result, so is the
definition of the quality. Instead, the solid statistical analysis used in MOSST
shows which directly measurable characteristics are truly influential on the OSS
qualities of interest and which weights should be used, based on an extensive
set of data coming from the field and not on some fairly subjective analysis.

So, unlike existing quality models for OSS, MOSST is built by means of a
theoretically valid approach and solid statistical techniques that use evidence
coming from OSS stakeholders and the analysis of actual OSS products and
projects. We collected data from 694 OSS stakeholders and obtained 4101
evaluations on 22 Java and 22 C++ programs. This has allowed us to build
statistically valid models to quantitatively predict the impact of objectively
observable characteristics of OSS products and projects on qualities of practical
interest, instead of collecting only data on objectively observable qualities of the
code that may only be conjectured to influence qualities of practical interest.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 21 of 39

4 SAMPLE MODELS

In this section we report a representative model belonging to MOSST for each
of the subjectively evaluates qualities that have been considered in the project.
All the models reported here are from [13], where the complete set of models –
over four hundred– is reported.

The quality level used in this section is the one obtained with threshold = 4, i.e.,
projects are considered satisfactory if they have been graded 5 (i.e., very
satisfactory) or 6 (completely satisfactory). Setting the threshold to such a high
level brings to the identification of really good products, and sets a challenging
target for the objectively measurable quality of code.

4.1 Trustworthiness

The model states that trustworthiness increases for well modularized products
(here modularization at the class level is indicated by the coupling between
objects: the lower the coupling, the better the modularization).
===
Trustworthiness vs. CBO
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.0898005 0.2500808 4.357793 1.313805e-05
x1 -0.1206116 0.0562384 -2.144648 3.198103e-02
R2log = 0.9198285
Excluded as outliers: Eclipse Perl Saxon (3 / 19)
MMRE = 17.77963
Pred(25) = 73.68421
Error range = [-99.39152 .. 52.6094]

===

After removing data coming from projects Eclipse, Perl and Saxon, which
appeared as outliers, we obtained a statistically significant logistic regression
model, which is represented in Figure 7.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 22 of 39

Figure 7. Trustworthiness (threshold = 4) as a function of CBO: Logistic
regression.

The variable Trustworthiness, which appears on the y axis, is defined as

i.e., it is the percentage of users that considered the product as satisfactory and
rated it above the threshold.

The curve has equation

The model is statistically significant with threshold 0.05, since its p-value is
0.03198 (see the value of Pr(>|z|) above).

The precision of the model is documented in Table 3.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 23 of 39

Table 3. Precision of the fitting of the regression line: indicators

Indicator Value

MMRE 17.8%

Error range -99% .. 53%

Pred(25) 74%

More precisely, the distribution of relative residuals (i.e., differences between
the estimated values and the real ones) for the various considered projects is
reported in Figure 8. It can be observed that only a couple of products do not fit
very well in the model.

Figure 8. Boxplot reporting the distribution of residuals for the
Trustworthiness vs. CBO model.

4.2 Reliability

A very good model correlates reliability with two characteristics of the
versioning/reviewing process of OSS. The model indicates that reliability is
higher for actively maintained products (high number of commits) that are fairly
stable (most files do not need revisions).
==
Reliability vs. number_of_commits, avg_number_of_revisions_per_file
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.8920003252 2.535470e-01 3.518087 0.000434670
x1 0.0001288062 5.530034e-05 2.329212 0.019847837
x2 -0.1339535226 4.821182e-02 -2.778437 0.005462102

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 24 of 39

R2log = 0.9204644
Excluded as outliers: Eclipse (1/13)
MMRE = 10.67684
Pred(25) = 92.3077
Error range = [-14.19207 .. 33.96322]
==

The distribution of relative residuals for this model is reported in

Figure 9. Boxplot reporting the distribution of relative residuals for the
model of Reliability vs. Number of commits and average number of
revisions per file.

4.3 Usability

An interesting model of usability indicates that users consider more usable the
OSS products that are maintained by many developers. This is reasonable,
since the more developers, the more likely it is that the user usability needs are
taken care in effectively.
==
Usability vs. number_of_developers
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.46917258 0.27110062 -1.730622 0.08351928
x1 0.02933536 0.01256109 2.335416 0.01952172
R2log = 0.9096772
Excluded as outliers: Log4J Saxon JBoss Eclipse (4 / 13)
MMRE = 15.42022
Pred(25) = 84.61538
Error range = [-52.42674 .. 19.70674]

==

The regression line is illustrated in Figure 10. The distribution of relative
residuals is reported in Figure 11.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 25 of 39

Figure 10. Regression line for the model of Usability vs. Number of
developers.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 26 of 39

Figure 11. Boxplot reporting the distribution of relative residuals for
model of Usability vs. Number of developers.

4.4 Portability

A quite precise model of portability indicates that OSS applications that make
larger use of generalization tend to be more portable.
===
Portability vs. NOC
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.006118287 0.1886794 0.03242690 0.97413161
x1 0.440620371 0.1784647 2.46894945 0.01355104
R2log = 0.9353108
Excluded as outliers: (0 / 16)
MMRE = 10.71177
Pred(25) = 93.75
Error range = [-24.75138 .. 58.92724]
===

The regression line is illustrated in Figure 12 The distribution of relative
residuals is reported in Figure 13.

Figure 12. Regression line for the model of Portability vs. NOC (number of
children).

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 27 of 39

Figure 13. Boxplot reporting the distribution of relative residuals for
model of Portability vs. NOC (number of children).

4.5 How well functional requirements are satisfied

An interesting model indicates that the users’ requirements are more easily
satisfied by products that are made of many packages and that feature a higher
than average complexity.
===
Functionality vs. McCabe , Num. packages
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.757822813 0.607124101 -2.895327 0.003787637
x1 0.825670508 0.260955347 3.164030 0.001556008
x2 0.001780181 0.000643463 2.766563 0.005665057
R2log = 0.9403595
Excluded as outliers: Log4J Xerces (2 / 16)
MMRE = 17.37332
Pred(25) = 75
Error range = [-26.99862 .. 89.81255]
===

The distribution of relative residuals is reported in Figure 14.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 28 of 39

Figure 14. Boxplot reporting the distribution of relative residuals for
model of Functionality vs. McCabe and number of packages.

4.6 Interoperability

A quite interesting and fairly precise model indicates that interoperability of OSS
products improves with the usage of generalization and the number of methods
per interface.
===
Interoperability vs. NOC , Num. methods per interface
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.2769657 0.5250736 -2.431975 0.01501675
x1 0.8443261 0.3777582 2.235097 0.02541099
x2 0.2734487 0.1135832 2.407474 0.01606331
R2log = 0.9128017
Excluded as outliers: Eclipse Log4J (2 / 14)
MMRE = 16.93735
Pred(25) = 78.57143
Error range = [-29.80316 .. 73.30486]
===

The distribution of relative residuals is reported in Figure 15.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 29 of 39

Figure 15. Boxplot reporting the distribution of relative residuals for
model of Interoperability vs. NOC and number of methods per interface.

4.7 Security

The model below says that the applications that are considered more secure by
users have methods that have been well specified as far as parameters are
concerned. For instance, methods with many parameters are expected to have
less side-effects and less I/O points, which are usually considered threats to
security. This is quite credible.
==
Security vs. Num. parameters per method
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.9851316 0.4394675 -2.241648 0.02498410
x1 1.1150867 0.5064968 2.201567 0.02769589
R2log = 0.9332337
Excluded as outliers: (0 / 16)
MMRE = 12.6%
Pred(25) = 93.75
Error range = [-20.41925 .. 21.6]
===

The regression line is illustrated in Figure 16. The distribution of relative
residuals is reported in Figure 17.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 30 of 39

Figure 16. Regression line of the model of Security vs. number of
parameters per method.

Figure 17. Boxplot reporting the distribution of relative residuals for
model of Security vs. number of parameters per method.

4.8 Performance (in terms of speed)

A quite credible model of speed indicates that the efficiency of OSS products
decreases with the lack of cohesion between methods and the number of
abstract classes. The model may be explained by the fact that higher values for

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 31 of 39

LCOM imply that most of the needed information is not local, thus requiring
indirect or non-optimally efficient access, while a higher number of abstract
classes suggests that inefficient late-binding is used.

===
Speed vs. LCOM , Num. abstract classes
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.2571669343 0.2020958999 1.272500 0.20319570
x1 -0.0004935335 0.0002169290 -2.275092 0.02290042
x2 -0.0039756765 0.0015553041 -2.556205 0.01058207
R2log = 0.929076
Excluded as outliers: Eclipse PMD (2 / 15)
MMRE = 17.16227
Pred(25) = 86.66667
Error range = [-38.8406 .. 105.9486]
===

The distribution of relative residuals is reported in Figure 18.

Figure 18. Boxplot reporting the distribution of relative residuals for
model of Speed vs. LCOM and the number of abstract classes.

4.9 Usefulness of the product developer community

The model reported below suggests that the usefulness of the community is
greater for simpler products that are maintained by a large number of
developers.
===
Community vs. McCabe , number_of_developers
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.14068354 0.37999532 -0.3702244 0.711215296
x1 -0.66074402 0.27967275 -2.3625613 0.018149139
x2 0.06185318 0.02329124 2.6556411 0.007915781
R2log = 0.9497033
Excluded as outliers: JBoss Saxon JFreeChart (3 / 13)

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 32 of 39

MMRE = 20.63438
Pred(25) = 69.23077
Error range = [-72.15354 .. 47.90988]
===

The distribution of relative residuals is reported in Figure 19.

Figure 19. Boxplot reporting the distribution of relative residuals for
model of Community utility vs. McCabe and number of developers.

4.10 Documentation Quality

The model reported below states that the quality of documentation improves for
OSS products that feature many public methods and are frequently maintained.
===
DocQuality vs. Num. public methods , avg_major_release_per_year
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.737036e+00 4.983675e-01 -3.485452 0.0004913072
x1 7.329941e-05 3.067189e-05 2.389791 0.0168579763
x2 8.063410e-01 3.833795e-01 2.103245 0.0354443690
R2log = 0.9045322
Excluded as outliers: Eclipse Log4J Hibernate (3 / 12)
MMRE = 19.49775
Pred(25) = 75
Error range = [-40.20908 .. 69.13603]
===

The distribution of relative residuals is reported in Figure 19.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 33 of 39

Figure 20. Boxplot reporting the distribution of relative residuals for
model of Documentation quality vs. Number of public methods and

average major releases pe year.

4.11 Trustworthiness with respect to non Open Source (closed source)
products

Building this model is very hard, because it aims at establishing a connection
between product objective characteristics and a quality that not only is
subjective and external, but is also relative to other products.

One of the best models we found is reported below. It says that OSS products
that are considered more competitive are the ones that grow faster (in term of
files added per year) on a stable base (there is little need to remove code).
===
CssCompetitors vs. avg_loc_del_per_year , avg_files_added_per_year
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.691809e-01 1.596831e-01 2.311960 0.02077991
x1 -8.480383e-06 3.593819e-06 -2.359714 0.01828904
x2 1.092654e-03 4.454859e-04 2.452724 0.01417790
R2log = 0.943119
Excluded as outliers: Struts (1 / 13)
MMRE = 9.655532
Pred(25) = 92.3077
Error range = [-13.12781 .. 37.83713]
===

The distribution of relative residuals is reported in Figure 21.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 34 of 39

Figure 21. Boxplot reporting the distribution of relative residuals for
model of Trustworthiness wrt CSS competitors vs. average LOC deleted
per year and average files added per year.

4.12 Trustworthiness with respect to Open Source products

An interesting model indicates that a product is preferable to OSS alternatives if
it is better commented and faster growing. This seems to indicate that OSS
users are greedy of new functionality (which has to be supported by extensive
documentation).
===
OssCompetitors vs. Comment lines per class, avg_files_added_per_year
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3065353449 0.3412067533 -0.898386 0.36897984
x1 0.0134078953 0.0065998498 2.031546 0.04219969
x2 0.0009208207 0.0003732333 2.467145 0.01361951
R2log = 0.9174157
Excluded as outliers: Eclipse JFreeChart Hibernate (3 / 13)
MMRE = 10.50353
Pred(25) = 84.61538
Error range = [-7.918586 .. 32.89196]
===

The distribution of relative residuals is reported in Figure 22.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 35 of 39

Figure 22. Boxplot reporting the distribution of relative residuals for
model of Trustworthiness wrt OSS competitors vs. comment lines per
class and average files added per year.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 36 of 39

5 PUBLICATIONS

The work reported here (often together with the results of other workpackages)
was the base for several publications. Here follows the list.

[1] Vieri del Bianco, Luigi Lavazza, Sandro Morasca and Davide Taibi, “A
Survey on OSS Product Trustworthiness”, IEEE Software. Accepted for
publication.

[2] D. Taibi, V. del Bianco, D. Dalle Carbonare, L. Lavazza, S. Morasca,
“Towards the evaluation of OSS trustworthiness: lessons learned from the
observation of relevant OSS projects”, the 4th International Conference on
Open Source Systems, 7-10 September 2008, Milano.

[3] Vieri del Bianco, Luigi Lavazza, Sandro Morasca and Davide Taibi,
“Quality of Open Source Software: the QualiPSo Trustworthiness Model”,
The 5th International Conference on Open Source Systems OSS09, 3-6
June 2009, Skövde, Sweden.

[4] Vieri del Bianco, Luigi Lavazza, Sandro Morasca, Davide Taibi and Davide
Tosi, “The QualiPSo approach to OSS product quality evaluation.”, 3rd
Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS-3), 8 May 2010, Cape Town, South Africa.

[5] Vieri del Bianco, Luigi Lavazza, Sandro Morasca and Davide Taibi, Davide
Tosi, “A Survey on the Importance of Some Economic Factors in the
Adoption of Open Source Software”, 8th ACIS conference on Software
Engineering Research, Management and Applications – SERA 2010,
Montreal, 24-26 May 2010. In Studies in Computational Intelligence, 2010,
Volume 296/2010, Springer.

[6] Vieri del Bianco, Luigi Lavazza, Sandro Morasca, Davide Taibi and Davide
Tosi, “An investigation of the users’ perception of OSS quality”, the 6th
International Conference on Open Source Systems, OSS 2010, 30 May -
2 June 2010, Notre Dame, IN, USA.

[7] Luigi Lavazza, Sandro Morasca, Davide Taibi and Davide Tosi, “Predicting
OSS Trustworthiness on the Basis of Elementary Code Assessment”, 4th
Int. Symposium on Empirical Software Engineering and Measurement –
ESEM 2010. 16-17 September 2010, Bolzano.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 37 of 39

6 CONCLUSIONS

The techniques and tools developed in WP5.3, WP5.4 and WP5.5 were
successfully used to measure and characterize a set of 44 OSS products.

The opinions of users about these projects were assessed via a questionnaire.
4101 product evaluations were collected.

Statistical techniques –mainly logistic regression– were employed to analyse
the collected data.

The result is a set of statistically significant quantitative models that represent
the dependence of trustworthiness user-perceivable OSS product qualities on
measurable characteristics of the code.

The models found can be beneficial to both users and developers of OSS.
Users can estimate the likely trustworthiness of OSS products without going
through a thorough evaluation, but just on the basis of the measurable
characteristics of the products. Developers have clear indications of what
characteristics their products must have in order to increase their probability of
being considered trustworthy by users.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 38 of 39

7 REFERENCES

[8] V. del Bianco, L. Lavazza, S. Morasca, D. Taibi, “Definition of
trustworthiness of software products and artefacts, Version 2.0”, QualiPSo
Working document wd 5.3.1, 31/10/2008.

[9] V. del Bianco, L. Lavazza, S. Morasca, D. Taibi, “Identification of factors
that influence the trustworthiness of software products and artefacts”,
Working document wd 5.3.2, Version 2.0 - QualiPSo report, October 2008.

[10] L. Lavazza, S. Morasca, D. Taibi, D. Tosi, “Definition and identification of
trustworthiness of software products and artefacts and its influencing
factors, version 4”, QualiPSo Working document wd 5.3.1, 31/01/2011.

[11] L. Lavazza, S. Morasca, D. Taibi, D. Tosi, “Experimentation on the
trustworthiness of Open Source Software, version 2.0”, QualiPSo Working
document wd 5.6.1, 30/06/2009.

[12] L. Lavazza, S. Morasca, D. Taibi, D. Tosi, “Experimentation on the
trustworthiness of Open Source Software, version 3.0”, QualiPSo Working
document wd 5.6.1, 31/01/2011.

[13] L. Lavazza, S. Morasca, D. Taibi, D. Tosi, “Trustworthiness models for
Open Source Software”, Working document wd 5.6.2, Version 3.0 -
QualiPSo report, January 2011.

[14] The R Development Core Team, “R: A Language and Environment for
Statistical Computing - Reference Index, Version 2.9.0 (2009-04-17)”, R
Foundation for Statistical Computing, 2009.

[15] Chidamber, S. R. and Kemerer, C. F. 1994. A Metrics Suite for Object
Oriented Design. IEEE Trans. Softw. Eng. 20, 6 (Jun. 1994), 476-493.

[16] T. J. McCabe, “A complexity measure”, IEEE Transactions on Software
Engineering, December 1976.

[17] V. del Bianco, L. Lavazza, S. Morasca, D. Taibi, “How the trustworthiness
of OSS products and artifacts can be assessed and predicted (v1)”,
QualiPSo report A5.D1.5.6 version 1.0 – October 2008.

[18] Lionel C. Briand, Sandro Morasca, and Victor R. Basili, “Defining and
Validating Measures for Object-Based High-Level Design”, IEEE
Transactions on Software Engineering, Vol. 25, No. 5, September/October
1999.

[19] Cook, R. D. and Weisberg, S. Residuals and Influence in Regression.
Chapman and Hall, London, 1982.

[20] Norman Fenton and Shari Lawrence Pfleeger. Software Metrics (2nd Ed.):
A Rigorous and Practical Approach. PWS Pub. Co., Boston, MA, USA.
1997.

[21] Roberts F.S., Measurement Theory: With Applications to Decision Making,
Utility, and the Social Sciences, Encyclopedia of Mathematics and its
Applications, Cambridge University Press, 1979.

QualiPSo • 034763 • A5.D1.5.6 • version 3.0, dated 31/01/2011 • Page 39 of 39

[22] Tversky A., Luce R.D., Suppes P., Krantz D., Foundations of
Measurement vol. I: Additive and Polynomial Representations, Academic
Press, 1971.

[23] Tversky A., Luce R.D., Suppes P., Krantz D., Foundations of
Measurement vol. II: Geometrical, Threshold, and Probabilistic
Representations, Academic Press, 1989.

[24] Sandro Morasca. A probability-based approach for measuring external
attributes of software artifacts. In Proceedings of the 2009 3rd
International Symposium on Empirical Software Engineering and
Measurement (ESEM '09). IEEE Computer Society, Washington, DC,
USA, 2009.

[25] Atos Origin, “Method for Qualification and Selection of Open Source
software (QSOS), version 1.6”, http://www.qsos.org/download/qsos-1.6-
en.pdf

[26] “Business Readiness Rating for Open Source - A Proposed Open
Standard to Facilitate Assessment and Adoption of Open Source
Software”, BRR 2005 - RFC 1, http://www.openbrr.org.

[27] “Making Open Source Ready for the Enterprise: The Open Source
Maturity Model”, from “Succeeding with Open Source” by Bernard Golden,
Addison-Wesley, 2005, available form http://www.navicasoft.com

[28] D. Taibi, L. Lavazza, S. Morasca, “OpenBQR: a framework for the
assessment of OSS”, Open Source Software 2007, Limerick, June 2007.

[29] Sandro Morasca, “On the use of weighted sums in the definition of
measures”, In Proceedings of the 2010 ICSE Workshop on Emerging
Trends in Software Metrics, WETSoM '10, Cape Town, South Africa, May
4, 2010, pages 8-15, New York, NY, USA, 2010. ACM.

