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ABSTRACT
The unauthorized propagation of information is an impor-
tant problem in the Internet, especially because of the in-
creasing popularity of On-line Social Networks. To address
this issue, many access control mechanisms have been pro-
posed so far, but there is still a lack of techniques to evalu-
ate the risk of unauthorized flow of information within so-
cial networks. This paper introduces a probability-based
approach to modeling the likelihood that information prop-
agates from one social network user to users who are not
authorized to access it. The approach is demonstrated via
an example, to show how it can be applied in practical cases.

Categories and Subject Descriptors
H.2.0 [Database Management]: General—Security, in-
tegrity and protection; D.2.8 [Software Engineering]: Met-
rics—complexity measures, performance measures

General Terms
Security, Measurement

Keywords
Social Networks, Privacy, Access control, Information leak-
age

1. INTRODUCTION
The Web is no longer just a simple tool for publishing tex-

tual data or images, but it has now evolved into a complex
collaborative knowledge management system. This evolu-
tion is mainly due to the rapid spread of social computing
services, such as blogs, wikis, social bookmarking, collabo-
rative filtering, and social networks [15]. On-line Social Net-
works (OSNs) represent one of the most relevant phenomena
related to Web 2.0. OSNs are online communities that allow
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users to publish resources and record and/or establish rela-
tionships with other users, possibly of different type (“friend
of,”“colleague of,” etc.), for purposes that may concern busi-
ness, entertainment, religion, dating, etc. To have an idea
of the relevance of the social networking phenomena, just
think that Facebook counts more than 500 million users.1

Additionally, social networking services are today more
and more used not only by single users, but at the enterprise
level to communicate, share information, make decisions,
and, in general, do business. This is in line with the emerg-
ing trend known as Enterprise 2.0 [14] — the use of Web 2.0
technologies within the Intranet, to allow for more sponta-
neous, knowledge-based collaboration. However, despite all
the benefits of social network facilities in terms of knowledge-
based collaboration and information sharing, there still exist
important problems in the further diffusion of such technolo-
gies. One of the most serious obstacles is related to security,
in terms of ensuring users that their privacy and access con-
trol requirements are preserved when sharing information
within social networks. These needs have resulted in the
development of several privacy preserving techniques and
access control models (see, for example [5] for a survey) for
OSNs. Almost all the defined access control mechanisms im-
plement topology-based access control, which basically identi-
fies authorized users by specifying constraints on the user so-
cial graph. As such, access control rules regulating informa-
tion sharing are defined by specifying the relationships that
users must have in order to have the right to access resources.
For instance, by means of topology-based access control, it
is possible to easily define rules to authorize “only direct
friends,” “only friends of friends,” etc. Some of the access
control models proposed so far also use trust and/or reputa-
tion as a further parameter on which access control is based.
Additionally, a basic form of topology-based access control
is also provided by existing commercial social networks. For
example, in addition to allowing a user to mark a given re-
source as public, private, or accessible by direct contacts,
Bebo (http://bebo.com), Facebook (http://facebook.com),
and Multiply (http://multiply.com) support the option “se-
lected friends” (selected contacts); Last.fm (http://last.fm)
supports the option “profile neighbors” (i.e., the set of OSN
members having musical preferences and tastes similar to
mine); Facebook, Friendster (http://friendster.com), and
Orkut (http://www.orkut.com) support the option “friends
of friends”; Xing (http://xing.com) supports the options

1http://www.facebook.com/press/info.php?statistics.
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“contacts of my contacts” (2nd degree contacts), and “3rd”
and“4th degree contacts”; LinkedIn (http://www.linkedin.com)
and Multiply support the option “my network” (n-th degree
contacts, i.e., all the OSN members to whom a user is either
directly or indirectly connected, independent of how distant
they are).

The main benefit of topology-based access control is its
flexibility in terms of policy specification, since authorized
users can be simply specified by stating conditions on re-
lationships, their depth, and trust levels. This flexibility,
however, may potentially lead users to losing control of their
data. Since access rules specify authorized users at an inten-
sional level, i.e., as constraints on relationships in the OSN,
the user specifying the rule might not be able to precisely
identify who is authorized to access his/her resources. Even
in small social networks, one can hardly understand which
users are actually authorized even with simple access rules
such as “friends of friends of my friends,” due to the many
relationships that users can establish. This possible loss of
control generates serious potential risks of unauthorized in-
formation flow. A user does not directly know the set of
users authorized by his/her policies, so he or she may not
actually be aware of potentially malicious behaviors of these
users in releasing accessed data to unauthorized users.

Therefore, there is a need for quantifying the potential
risks that may result from the access rules specified in OSNs,
so the users are fully aware of the possible effects of their
decisions in specifying access rules. In this paper, we in-
troduce a probability-based approach for quantifying the
probability that user resources may become accessible to an-
other user of the OSN. This probability is computed based
on the probability of propagation of information associated
with each direct relationship present in the OSN. Specifi-
cally, we show how to exactly compute the probability that
a resource propagates from one user to another on the set
of paths that link the two users. Also, because the exact
computation of this probability may be computationally in-
tensive, we show how an upper bound for this probability
can be derived. Then, we quantify the Unauthorized Ac-
cess Risk (UAR) as an upper bound to the probability that
sensitive resources reach any unauthorized user in an OSN
that enforces topology-based access control. The approach
is demonstrated via an example having as target the Enter-
prise 2.0 domain, to show how it can be applied in practical
cases. It is relevant to note that the probability-based ap-
proach for UAR estimation presented in this paper is just
the core component of a more comprehensive framework for
information flow management and prevention in OSNs. As
it will be discussed in Section 5, the framework needs to
be complemented with other important functionalities (e.g.,
automatic computation of probability of information propa-
gation associated with a relationship, tailored GUI helping
users to set up access control rules based on the UAR met-
ric).

Assessing the implications of access control policies tradi-
tionally lies in the domain of safety/security analysis, which
has been addressed for several different domains (e.g., op-
erating systems [10], role-based access control [13], trust
management [16]) but to the best of our knowledge not for
OSNs. In contrast, in the field of OSN, literature offers sev-
eral topology-based access control models and mechanisms
for social networks (e.g., [1, 4, 6, 7, 8, 12]). However, to
the best of our knowledge, this is the first work proposing a

measure for the risk of information leakage due to unautho-
rized propagation. Inference problems in OSNs have been
addressed by other work, but from a totally different per-
spective, mainly related to sensitive attribute inference. For
instance, Zheleva and Ghetoor in [17] address the problem
of inferences of private user attributes from public profile
attributes, links, and group memberships in OSNs, whereas
[11] investigates the effect of social relations on sensitive
attribute inference. The work that is most related to the
proposal in this paper is [2], where a privacy-preserving tool
is proposed to enable a user to visualize the view that other
users have of his or her Facebook profile, on the basis of the
specified privacy policies. This means that a user should
explicitly select one of his or her neighbors n in the OSN to
see what n can see of his or her profile. However, due to the
huge number of users in an OSN, it may be almost impossi-
ble by using this tool to understand the effect of a policy in
terms of unauthorized information disclosure, which is the
focus of our work.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces basic concepts on OSNs and topology-
based access control. Section 3 presents the probability-
based approach, whereas Section 4 shows some examples of
its application. Finally, Section 5 concludes the paper and
outlines future work.

2. BASIC CONCEPTS
In this section, we introduce the modeling approach we

use to represent an OSN (Section 2.1), then, we illustrate
the reference access control model we adopt to identify au-
thorized users (Section 2.2).

2.1 The Underlying Model of OSNs
An OSN may be modeled as a directed labeled graph,

where nodes correspond to users and arcs denote relation-
ships between users. Given a relationship, the initial node of
an arc denotes the user that has established the relationship
and the terminal node the user that has accepted that re-
lationship. For notational convenience, we use letters from
the Greek alphabet to denote nodes.

The OSN model also supports different types of relation-
ship (e.g., “friend of,”“colleague of”), which are modeled as
labels of the arcs. We say that two users α and β are in a
direct relationship of a given type rt if there is an arc con-
necting α and β that bears the label rt. Also, two users α
and β are in an indirect relationship of a given type rt if
there is a directed path of more than one arc connecting α
and β such that all of the arcs on the path bear the label rt.

A relationship of type rt from user α to user β may be
characterized by a trust level, representing how trustworthy
α considers β, as far as a relationship of kind rt is concerned.
Thus, each arc is annotated with a value t ∈ [0, 1] that
quantifies the trust level associated with the relationship
represented by the arc.

Information may be passed along the relationships of the
OSN, and there is a risk that a confidential resource is ille-
gally released to unauthorized users. As shown in Section
3.5, we introduce the Unauthorized Access Risk as an upper
bound to the probability that a confidential resource reaches
unauthorized users directly or via a path of relationships
in the OSN. To this end, in our model, each arc is asso-
ciated with the probability that information is propagated
by means of the relationship represented by the arc. More
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precisely, given two users α and β, directly connected by an
arc, p(α,β ) quantifies the conditional probability that, if α
knows a given resource rsc, then he or she propagates rsc
to β, i.e.,

p(α,β ) = p(α makes rsc known to β|α knows rsc) (1)

Thus, we assume that the probability of propagation of rsc
from one node to another does not depend on the previous
propagation history of rsc. So, even if α may receive rsc
from multiple nodes, p(α,β ) does not depend on the specific
nodes that have propagated rsc to α, nor on the fact that
α may have created rsc. Note that, in addition, p(α,β ) is
defined regardless of the fact that a resource rsc is legally or
illegally propagated on the arc connecting α and β according
to the access rules associated with rsc (see Section 2.2).

Summarizing, a social networkOSN can be formally mod-
eled as a tuple OSN =< N,A,RT, TL, lab >, where

• N represents the set of nodes (i.e., the users) of the
social network;

• RT represents the set of relationship types existing in
the social network;

• A ⊆ N × N × RT is the set of arcs (i.e., the set of
relationships between users in the social network) of
the social network OSN ;

• TL is the set of supported trust levels, which we as-
sume to be the closed interval [0, 1] in this paper;

• lab : A → TL× [0, 1] is a labeling function that assigns
to each relationship r ∈ A a trust level t ∈ TL, and
a probability p ∈ [0, 1] that information propagates
along the arc.

Note that in what follows, for simplicity and notational
convenience, we use graphs and not multigraphs, i.e., given
any two nodes α and β, there is at most one arc connecting
α to β. For instance, this means that it is not possible that
α and β are connected by a “friend of” and “colleague of”
direct relationship at the same time. So, the pair < α, β >
uniquely denotes an arc connecting two nodes, where for
simplicity we omit the relationship type.2 Therefore, we
can safely write p(α,β ) to denote the probability associated
with it. This will not affect the computation of the resource
propagation probabilities of Section 3.

There may be several ways to compute probability p(α,β ).
Indeed, based on the social network context, it is easy to fig-
ure out different factors that impact this probability, like
users’ reputation, relationships semantics, etc. However,
since this probability value is just a parameter of the pro-
posed Unauthorized Access Risk measure, we do not address
the issue of its computation in the current paper, but we plan
to address this in our future work.

Figure 1 contains an example of a portion of an OSN for
a financial domain. For instance, the arc from α to β shows
that α is in relationship “MOf” (i.e., “manager of”) with β,
that this relationship has a 0.8 trust level, and that it has a
0.5 probability that information is propagated from α to β.

2Note that this assumption is in line with proposals in the
social network analysis literature, where arcs are no labelled.
Moreover, some of existing online social networks fit into a
simply graph representation. As an example, in Facebook
two users can establish only a unique friendship relationship.

This example is explained in more details in Section 2.2 and
used in Section 4 to show how our approach can be applied
in practice.

2.2 Access Control
The access control mechanism allows us to identify the

users that are authorized to access a confidential resource
and those that are not authorized. As the reference access
control model for OSNs, we now summarize the one pro-
posed by us in [6]. The use of this access control model
is motivated by the fact that it supports all properties of
other access control models for OSNs proposed so far, i.e.,
constraints on type, depth and trust level of the relation-
ships identifying authorized users. According to this model,
each resource to be shared in the network is protected by
a set of access rules, denoting the users authorized to ac-
cess the resource in terms of the type, depth, and trust level
of existing relationships in the network. Each access rule
ar has the form ar =< rsc,AC >, where AC is a set of
access conditions, all of which need to be satisfied in order
to get access to resource rsc. Formally, an access condi-
tion is a tuple ac =< v, rt, d max, t min >, where v is the
network user with whom the requestor of a given resource
must have a direct or indirect relationship to obtain the ac-
cess, whereas rt, d max, and t min are, respectively, the
type, maximum depth, and minimum trust level that the
relationship must have in order to get the access. The trust
level of a direct relationship is provided by the annotation
on the corresponding arc. The trust level of an indirect re-
lationship, which is represented by a path linking two nodes
of the graph, needs to be computed based on the trust levels
associated with the arcs composing the path. The literature
offers several algorithms to compute the trust of indirect
relationships in OSNs [9]. At any rate, the specific algo-
rithm for trust computation is not the focus of our paper,
as it is used only to find the set of users that are or are not
authorized to receive a confidential resource. So, the algo-
rithm for trust computation does not impact the proposed
probability-based approach shown in Section 3. In this pa-
per, for simplicity, we suppose that the trust level of a path
is obtained by multiplying the trust levels of all the arcs in
the path. In addition, if users α and β are linked by a set of
paths, we take the maximum value of trust along all these
paths as the value for the trust that α has in β.

We exemplify the considered access control model by means
of the OSN in Figure 1. The social network is designed to
support agents working for a given financial company. By
using the social networking functionalities, agents are able
to find updated information on the company products and
share a variety of information (e.g., opinions on new prod-
ucts, marketing strategies, data about the sales). Moreover,
agents are able to establish relationships of different types.

Relationship types are defined according to the FOAF vo-
cabulary [3], which has been extended to model the roles
agents may play in the company. Thus, for instance, agent
α has a relationship of typeManagerOf (MOf for short) with
β and a relationship of type ColleagueOf (COf) with γ. In
the example, social network relationships can be established
also based on agents’ personal relationships. As an example,
β has established a FriendOf relationship (FOf) with γ.

Moreover, according to the company business strategies,
agents can also form smaller networks or groups (for in-
stance related to products of a particular type, or denot-
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Figure 1: A portion of an OSN for a financial company

ing a partnership among some of the agents). As such,
agents could have different requirements about resources
sharing. For example, we can assume that agent α would
like to share his/her opinions about a product (contained in
the report ProdX α opinions) with: (1) his/her colleagues
and colleagues of his/her colleagues; (2) agents managed by
him/her as well as agents managed by agents he/she man-
ages. Moreover, α would like to share the report only with
those nodes with whom the required relationship has a mini-
mum trust value of 0.5. To enforce these requirements, α can
specify the following access rule: ar =< ProdX α opinions,
{< α,MOf, 2, 0.5 >,< α, COf, 2, 0.5 >} >. Referring to
Figure 1, the nodes that can access ProdX α opinions are
β, γ, ζ, and µ. According to the specified access rule, ε is
not allowed to access the report even if he or she satisfies the
requirements on the relationship type, in that the trust level
is 0.16, less than the 0.5 threshold required by the access rule
in both access conditions.

3. PROPOSED APPROACH
We first show in Section 3.1 how we can compute the prob-

ability that a resource rsc propagates along a specific path
from a specified node α to another node β. Then, in Section
3.2, we we discuss, through a few representative examples,
how we can compute the probability that rsc propagates
from α to β, regardless of the specific path followed. This
leads to the explanation of the general formula and algo-
rithm for computing this probability (3.3). Due to the com-
putational complexity of the algorithm described in Section
3.3, we provide an upper bound to this probability in Sec-
tion 3.4. Building on these concepts, Section 3.5 introduces
the Unauthorized Access Risk, i.e., an upper bound to the
probability that a resource is accessed by any unauthorized
user.

3.1 Resource Propagation along a Path
We can define the probability that rsc propagates along a

path in the graph denoting an OSN based on the probabili-
ties associated with each arc. Given path =< α1,α2, . . . ,
αn >, the probability P (path) that rsc propagates from α1

to αn along path is the conditional probability:

P (path) = P (α1 makes rsc known to αn along path|
α1 knows rsc) (2)

That is also computed as

P (path) = P (α1 makes rsc known to α2

∧α2 makes rsc known to αn along path|
α1 knows rsc ∧ α1 makes rsc directly known to α2)

P (α1 makes rsc directly known to α2) (3)

The first probability in the expression in the right-hand
side of Formula (2) can be simplified as follows. The fact
that α1 makes rsc directly known to α2 is implied by the
conditioning event α1 knows rsc ∧ α1 makes rsc directly
known to α2, so we can remove α1 makes rsc known to α2

from the conditional event and we have P (α2 makes rsc
known to αn along path|α1 knows rsc ∧ α1 makes rsc
directly known to α2). The conditioning event can be rewrit-
ten as α1 knows rsc∧α1 makes rsc directly known to α2

∧ α2 knows rsc. As the probability of propagation of rsc
from α2 does not depend on the previous history of rsc,
α1 knows rsc∧α1 makes rsc directly known to α2 can be
removed from the conditioning event. Also, by definition,
p(α1,α2) = p(α1 makes rsc directly known to α2), where
p(α1,α2) is the probability given as an annotation of the arc
from α1 to α2, as described in Section 2, so Formula (3) can
be rewritten as

P (path) = P (α2 makes rsc known to αn along path|
α2 knows rsc)

P (α1 makes rsc directly known to α2) (4)

We can now recursively apply the same reasoning on this
probability and we stop the recursion when P (αn−1 makes
rsc known to αn along path|αn−1 knows rsc), which is by
definition equal to P (αn−1,αn). So, P (path) is actually the
product of the individual probabilities of the arcs encoun-
tered along path, that is:

P (path) =
∏

i∈1..n−1

p(αi,αi+1) (5)

3.2 Resource Propagation along a Set of Paths
Several different paths may connect two nodes α and β in

an OSN. In what follows, we denote the set of paths that
connect α to β as α → β. In this section, we show how
we compute the probability P (α → β) that rsc propagates
from α to β along any path in α → β.

To this end, we use a few examples for illustration pur-
poses. We start with the case of two paths that do not have
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any arc in common, even though they have the same start
and end node. We then illustrate the more general case of
two paths that have the same start and end node and that
share at least one arc. Finally, we also discuss how to deal
with paths with loops.

3.2.1 Two Paths with No Arcs in Common
In Figure 2, nodes α and γ are connected by means of

two paths:3 path1 =< α,β, γ > and path2 =< α, γ >. So,
we have α → β = {< α,β, γ >,< α, γ >}. Information
may propagate from α to γ along both paths of even along
one path and not the other. We assume that propagation of
information along one arc is independent from propagation
along any other arc. So, for instance, the propagation of rsc
along < α, γ > is independent from the propagation of rsc
along < α,β >, and, therefore, along < α,β, γ >.

Probability P (α → γ) = P (path1 ∨ path2), where path1 ∨
path2 is the event that rsc propagates along path1 or path2,
i.e., the event obtained as the disjunction of events path1

and path2. We can apply a general property of probabilities
in the case of events built via disjunctions of events, which
we rephrase for our case as follows:

P (path1 ∨ path2) =

P (path1) + P (path2)− P (path1 ∧ path2) =

P (path1) + P (path2)(1− P (path1|path2)) (6)

This general property will be later applied to the more
general example of two paths with arcs in common and used
in the derivation of the general formula for the computation
of the propagation probability (Formula (14)).

In Figure 2, we have P (path1) = p(α,β )p(β,γ ) and P (path2)
= p(α,γ ). The two paths are independent, i.e., rsc’s propa-
gation along path1 is independent of rsc’s propagation along
path2, so we also have P (path1|path2) = P (path1) and

P (α → γ) = p(α,β )p(β,γ ) + p(α,γ )(1− p(α,β )p(β,γ )) (7)

As a further proof, we can also compute P (α → γ) in a
different way, which we use as the basis for computing the
upper bound of P (α → γ) in Section 3.4. P (α → γ) can
be computed as the complement of probability Q(α → γ) =
1 − P (α → γ) that rsc does not propagate from α to γ on
either path. Since the two paths are independent, Q(α → γ)
is the product of probability 1−P (path1) = 1−p(α,β )p(β,γ )
and probability 1− P (path1) = 1− p(α,γ ), i.e.,

P (α → γ) = 1− (1− p(α,β )p(β,γ ))(1− p(α,γ )) = (8)

p(α,β )p(β,γ ) + p(α,γ )(1− p(α,β )p(β,γ )) (9)

3.2.2 Two Paths with Arcs in Common
However, it is not always the case that paths are indepen-

dent. In the general case, two paths connecting α and β may
very well have arcs in common, so they are not independent.

The two paths path1 =< δ,α,β, γ > and path2 =< δ,α, γ >
from δ to γ share arc < δ,α >, so they are not inde-
pendent. We can apply Formula (6), where P (path1) =
p(δ,α )p(α,β )p(β,γ ) and P (path2) = p(δ,α )p(α,γ ). We now
need to compute P (path1|path2) to complete the formula.
P (path1|path2) is the probability that rsc propagates along
path1, once it is already known that rsc propagates along
path2. Thus, it is the probability that rsc propagates along

3Here and in the following figures, for simplicity we omitt
the relationship type informationa associated with an arc.

Figure 2: A fragment of an OSN

< δ,α >, < α,β >, and < β, γ >, once it is known that it
propagates along < δ,α > and < α, γ >. So it is the prob-
ability that rsc propagates along < α,β > and < β, γ >,
since we already know rsc propagates along < δ,α >. Sum-
marizing, we have:

P (δ → γ) =

p(δ,α )p(α,β )p(β,γ ) + p(δ,α )p(α,γ )(1− p(α,β )p(β,γ )) =

p(δ,α )(p(α,β )p(β,γ ) + p(α,γ )(1− p(α,β )p(β,γ ))) =

p(δ,α )P (α → γ) (10)

The right-hand part of the last equality in Formula (10)
shows that Formula (6) gives results that are consistent with
what one may already expect. P (δ → γ) is the product of
the probability p(δ,α ) that rsc propagates from δ to α and
the probability P (α → γ) that rsc propagates from α to γ.

3.2.3 Dealing with Loops
Some care needs to be exercised when cycles are present in

the graph, but, as we now show with an example, the result
will actually be a simplification of the graph. Suppose we
have the graph in Figure 3 i.e., a graph with an “entry”
node α, a loop < β, γ, δ,β >, and an “exit” node ε. The
computation of P (α → ε) can be broken down as the product
of three probabilities:

P (α → ε) = P (α → β)P (β → γ)P (γ → ε) (11)

Set β → γ contains an infinite number of paths, because
of the presence of loop < β, γ, δ,β >. However, no paths
that contain a loop need to be taken into account for our
goals. Suppose that rsc has reached node γ along path <
α, β, γ> . The probability that rsc reaches γ along that
path is P (< α, β, γ >). The probability that rsc is known
by γ after one iteration of the loop is:

P (α,β, γ, δ,β,γ ) = P (γ, δ,β,γ |α,β,γ )P (α,β,γ ) =

P (α,β,γ )P (γ, δ,β,γ ) (12)

However, according to the meaning of our probabilities,
P (α → β) is the probability that, if rsc is known at node
α, it also gets known at node β. So, P (α → α) = 1. As a
consequence, P (< γ, δ,β, γ >) = 1, and:

P (< α,β, γ, δ,β, γ >) = P (< α,β, γ >) (13)

Thus, when computing P (α → β), we can ignore all loops
in α → β, and α → β can be reduced to the paths in the
hierarchy (i.e., the directed acyclic graph) in which α is not
preceded by any other node and β is not followed by any

55



Figure 3: An example of graph with a loop

other node. Thus, we deal with a finite set of paths. Once
the hierarchy from α to β is known, we can build P (α → β)
by starting from α and proceeding down the levels of the
hierarchy.

3.3 Exact Computation of the Probability of
Propagation along a Set of Paths

We can now show what happens in the general case, and
how the probability of information propagating from one
node to another node can be computed in a recursive man-
ner. Given two nodes α and β, let us suppose that α → β
is composed of n paths path1, path2, . . . , pathn. We com-
pute P (path1 ∨ path2 ∨ . . . ∨ pathn), where, from a logical
point of view, path1 ∨ path2 ∨ . . . ∨ pathn is a formula in
Disjunctive Normal Form containing n − 1 disjunction op-
erators and each term pathi is a conjunction of ki predi-
cates, each denoting the fact that rsc propagates along a
specific arc of pathi. For instance, in Figure 1, path1 can
be also represented as the conjunction of the two predicates
prop<α,β>, which denotes the fact that rsc propagates on
arc < α,β >, and prop<β,γ>, which denotes the fact that
rsc propagates on arc < β, γ >. So, we can write path1 =
prop<α,β> ∧ prop<β,γ>. Likewise, path2 = prop<α,γ> , and
path1 ∨ path2 = prop<α,β> ∧ prop<β,γ> ∨ prop<α,γ> . Be-
cause of the general property of probabilities of Formula (6),
we can write:

P (path1 ∨ path2 ∨ . . . ∨ pathn) =

P (path1 ∨ path2 ∨ . . . ∨ pathn−1) +

P (pathn)(1− P (path1 ∨ path2 ∨ . . . ∨ pathn−1|pathn)) (14)

Let us examine the terms appearing in the formula.

• P (pathn) can be computed directly as shown in Sec-
tion 3.1.

• P (path1 ∨ path2 ∨ . . .∨ pathn−1) can be computed re-
cursively, by applying Formula (14) to the set of paths
{path1, path2, . . . , pathn−1}, which contains one less
path than the initial set of paths, so recursion is guar-
anteed to end when the set of paths contains only one
path.

• P (path1∨path2∨. . .∨pathn−1|pathn) can be first sim-
plified and then computed recursively. As for the sim-
plification part, P (path1∨path2∨ . . .∨pathn−1|pathn)
is the probability that rsc propagates along at least one
path in {path1, path2, . . . , pathn−1} once it is known
that rsc propagates along pathn. For instance, let us
take the example in Figure 2 and let us show with logi-
cal arguments that P (path1|path2) = p(α,β )
p(β,γ ) in that case, as we have already shown when

we discussed Formula (10). The two paths from δ
to γ can be rephrased in logical terms as path1 =
propδ,α ∧ propα,β ∧ propβ,γ and path2 = propδ,α ∧
propα,γ . So, P (path1|path2) = P (propδ,α ∧ propα,β ∧
propβ,γ|propδ,α ∧ propα,γ). The conditioning event
propδ,α ∧ propα,γ is assumed to occur, so both propδ,α
and propα,γ are true. So, we can set propδ,α and
propα,γ to true in the conditional event (i.e., since only
propδ,α appears in the conditional event, we removed
it from the conditional event) and the conditioning
event, so P (path1|path2) = P (propα,β ∧ propβ,γ) =
p(α,β )p(β,γ ). From a logical point of view, we can
replace P (path1 ∨ path2 ∨ . . . ∨ pathn−1|pathn) with
P (path′

1 ∨ path′
2 ∨ . . .∨ path′

n−1), in which each single
conjunction path′

i is obtained by eliminating from the
corresponding conjunction pathi all those predicates
that also appear in pathn, because it is assumed that
those predicates are true, so they need not be evalu-
ated when evaluating the truth value of pathi. As a
consequence, the new probability P (path′

1 ∨ path′
2 ∨

. . .∨path′
n−1) is based on a predicate which is built as

– a formula in Disjunctive Normal Form contain-
ing n− 2 disjunction operators, one less than the
original formula

– and each term path′
i is a conjunction of k′

i predi-
cates, with k′

i ≤ ki, where ki denotes the number
of predicates in pathn and k′

i the number of pred-
icates in path′

n.

Thus, we can apply Formula (14) to P (path′
1∨path′

2∨
. . . ∨ path′

n−1), and recursion is guaranteed to end.

Thus, we have found out a recursive algorithm for com-
puting P (α → β), regardless of the path along which rsc
propagates from α to β. However, the computational com-
plexity of the algorithm may be too high, as we now show.
The number of recursions clearly depends on the number of
paths. Suppose we have a hierarchy with n + 2 nodes, i.e.,
with one initial node, one terminal node, and n intermedi-
ate nodes. Suppose that this hierarchy has l + 2 levels and
that each level has the same number of nodes, i.e., n = a · l,
except for the initial and the terminal levels. Suppose also
that there is an arc from each node at level j to each node
at level j + 1. Then, it can be shown that the number of
paths for this graph is (nl )

l = a
n
a . So, the number of paths

grows exponentially with n, in this case.

3.4 An Upper Bound to the Probability of Prop-
agation along a Set of Paths

Since the computational complexity for the exact compu-
tation of P (α → β) may be too high, we here derive an
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upper bound for it. To this end, let us take α → β =
{path1, path2, . . . , pathn} like we did in Section 3.2, so we
can use P (path1 ∨ path2 ∨ . . . ∨ pathn) in our derivation.

For notational convenience, let Pre(β) be the set of nodes
in the “preset” of β, i.e., the set of those nodes ζ that have
a direct arc to β, i.e., < ζ,β >∈ A. We first show that:

P (α → β) ≤ 1−
∏

ζ∈Pre(β)

(1− P (α → ζ)p(ζ,β )) (15)

We can write P (α → β) as follows:

P (α → β) = P (α → ζ1 → β ∨ . . . ∨ α → ζn → β) (16)

Formula (16) shows that the probability that rsc propa-
gates from α to β is the probability that it propagates on
at least one path that goes from α to β through one of the
ζi ∈ Pre(β). Based on the probability properties of dis-
junctions (that we already used in Formula (6)), we can also
write that:

P (α → β) =

P (α → ζ1 → β ∨ . . . ∨ α → ζn−1 → β) + P (α → ζn → β)

(1− P (α → ζ1 → β ∨ . . . ∨ α → ζn−1 → β|α → ζn → β)) (17)

Now, we have:

P (α → ζ1 → β ∨ . . . ∨ α → ζn−1 → β|α → ζn → β) ≥
P (α → ζ1 → β ∨ . . . ∨ α → ζn−1 → β) (18)

because knowing that rsc propagates from α to β via ζn
will never decrease the probability of it propagating along
any other paths. As we already discussed, knowing that rsc
propagates from α to β via ζn means that some of the pred-
icates in the paths in α → ζn → β are true, so they can be
removed from the conditional event α → ζ1 → β ∨ . . .∨α →
ζn−1 → β. This implies that the probability of propagation
of rsc along the paths in α → ζ1 → β

⋃
. . .

⋃
α → ζn−1 → β

may increase, but never decrease.
As a consequence, we can write:

P (α → β) ≤ P (α → ζ1 → β ∨ . . . ∨ α → ζn−1 → β) +

P (α → ζn → β)

(1− P (α → ζ1 → β ∨ . . . ∨ α → ζn−1 → β)) =

P (α → ζn → β) +

Q(α → ζn → β)P (α → ζ1 → β ∨ . . . ∨ α → ζn−1 → β) =

1−Q(α → ζn → β)Q(α → ζ1 → β ∨ . . . ∨ α → ζn−1 → β) (19)

which can be rewritten as:

Q(α → β) ≥
Q(α → ζn → β)Q(α → ζ1 → β ∨ . . . ∨ α → ζn−1 → β) (20)

We can now apply the same reasoning to Q(α → ζ1 →
β ∨ . . . ∨ α → ζn−1 → β), so we obtain:

Q(α → β) ≥
∏

ζ∈Pre(β)

Q(α → ζ → β) (21)

which can be rewritten as:

P (α → β) ≤ 1−
∏

ζ∈Pre(β)

(1− P (α → ζ)p(ζ,β )) (22)

since Q(α → ζ → β) = 1− P (α → ζ)p(ζ,β ).
However, computing P (α → ζ) would imply enumerating

all the paths in α → ζ, whose computational complexity

Figure 4: An example hierarchy

Table 1: Probability upper bounds and trust for the
nodes in Figure 4

Node UB UB′ Trust
α 1.00 1.00 1.00
β 0.51 0.51 0.20
γ 0.76 0.76 0.86
δ 0.2193 N/A 0.114
ε 0.7435 0.456 0.3698
ζ 0.8121 0.5092 0.5762

may be too high. So, we introduce another approximation,
based on the fact that, if we select UB(α → ζ) ≥ P (α → ζ)
(UB as in Upper Bound) we have:

P (α → β) ≤ 1−
∏

ζ∈Pre(β)

(1− P (α → ζ)p(ζ,β ))

≤ 1−
∏

ζ∈Pre(β)

(1− UB(α → ζ)p(ζ,β )) (23)

So, we need to build UB for all nodes. Here is one possi-
bility:

UB(α → β) = 1−
∏

ζ∈Pre(β)

(1− UB(α → ζ)p(ζ,β )) (24)

with UB(α → β) = p(α,β ) for all those nodes β such that
Pre(β) = {α}, i.e., whose only node in the preset is α. Thus,
we start from α and its successor nodes, and proceeding level
by level in the hierarchy we can build function UB for all
nodes. For instance, for the hierarchy in Figure 4, we obtain
the values for UB reported in Table 1. (In this section, we
only deal with column UB. The meaning of the other two
columns will be illustrated in Section 3.5.)

Let us show how the computations of the values of UB
were carried out for the nodes in Figure 1. Obviously, UB(α)
= 1, as α is the original owner of the resource. The val-
ues UB(β) = 0.51 = p(α,β ) and UB(γ) = 0.76 = p(α,γ )
can be computed directly as α is directly linked to β and
to γ. At any rate, by using Formula (24), we also ob-
tain UB(β) = 1 − (1 − UB(α) · p(α,β )) = p(α,β ) and
UB(γ) = 1−(1−UB(α)·p(α,γ )) = p(α,γ ). Again, UB(δ) =
0.76 = p(α,β ) · p(β,δ ) can be computed based on the prob-
abilities associated with the arcs, because there is only one
path from α to δ. Alternatively, via Formula (24), we also
obtain UB(δ) = 1− (1−UB(β) · p(β,δ )) = p(α,β ) · p(β,δ ).
Let us now focus on UB(ε), which we compute based on
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Formula (24), i.e., UB(ε) = 1 − (1 − UB(β)p(β,ε))(1 −
UB(δ)p(δ,ε ))(1 − UB(γ)p(γ,ε)). Likewise, UB(ζ) = 1 −
(1− UB(γ)p(γ,ζ ))(1− UB(ε)p(ε,ζ )).

The value of UB(α → β) obtained is a sharp approxima-
tion, as it does coincide with the real value of P (α → β)
whenever α → β contains only independent paths, like the
ones of the example of Section 3.2.1.

The computation of UB(α → β) according to Formula
(24) involves a number of multiplications that is quadratic
with the number of nodes, as we now show. The compu-
tation of UB(α → β) involves a number of multiplications
equal to the number of incoming arcs of β, once the values
of UB(α → ζ) are known for all ζ in Pre(β). Likewise, the
number of multiplications needed to compute the values of
UB(α → ζ) for all of these ζ’s is equal to the number of the
incoming arcs of all of the ζ’s, once the values of UB(α → τ )
are known for all τ in their presets. By proceeding back-
wards from β) to α, we obtain that the total number of
multiplications needed to compute UB(α → β) is equal to
the sum of the number of the incoming arcs of all the nodes
in α → β. Since the sets of incoming arcs of two different
nodes are obviously disjoint, we have that the number of
of multiplications needed to compute UB(α → β) is equal
to the number of arcs in α → β, which grows quadratically
with the number of nodes.

3.5 Unauthorized Access Risk
We here introduce theUnauthorized Access Risk (UAR(ar))

as the probability that, given an access rule ar, a resource is
passed to any unauthorized user. UAR(ar) depends on the
probability of propagation of the resource across the OSN,
as defined in Section 3 and on the considered access rule (see
Section 2). The intuition behind the definition of UAR is
the following. An access rule identifies a set of authorized
users and, consequently, a set of unauthorized users. An
unauthorized release of a resource happens when a user not
authorized by any access rules receives the resource. From
that moment on, the resource can be always illegally prop-
agated. Clearly, if an unauthorized user receives a resource,
then there is at least an authorized user that passes the re-
source to him or her. This may happen only if there is a
relationship in the OSN linking the authorized user to the
unauthorized one. Therefore, we can quantify the UAR as
the probability that any unauthorized user linked to at least
one authorized user receives the resource from the latter.

Let Auth(ar) ⊆ N be the set of authorized nodes and
UnAuth(ar) ⊆ N be the set of nodes not authorized by
an access rule ar, given the set of nodes N and a resource
rsc. Also, let BorderUnAuth(ar) ⊆ UnAuth(ar) be the
set of unauthorized nodes on the border with the autho-
rized nodes, more precisely, BorderUnAuth(ar) is the set
of unauthorized nodes in whose preset there is at least one
authorized node, i.e.,

BorderUnAuth(ar) = {α ∈ N |Pre(α) ∩Auth(ar) += ∅} (25)

where, Pre(α) = {β| < β,α >∈ A}. We define UAR as the
probability that any node in BorderUnAuth(ar) receives
rsc. Once rsc is known to any of these nodes, it can be
always propagated in an unauthorized way.

Based on these definitions, UAR(ar) is defined as in For-
mula (26):

UAR(ar) = P (
∨

β∈BorderUnAuth(ar)

α → β) (26)

Figure 5: An example hierarchy with node ω

A first upper bound for UAR(ar) can be computed as fol-
lows, by directly using the upper bound approximation de-
rived in Section 3.4. Once the nodes in BorderUnAuth(ar)
have been identified, suppose we introduce an additional
node ω and an arc from each node in BorderUnAuth(ar) to
node ω associated with a probability 1 of information prop-
agation. We can compute UAR as the probability that rsc
propagates from α to ω, according to the formulas in Section
3.1 and we can find an upper bound for it according to the
procedure shown in Section 3.4.

For instance, take the example OSN in Figure 4 and sup-
pose that the access rule specifies that authorized nodes
need to have at least a level of trust of 0.5 and may have
a maximum distance from α of 4. As the maximum dis-
tance between nodes in this hierarchy is 4, the nodes in
BorderUnAuth(ar) are those with a trust level lower than
0.5. As column trust in Table 1 shows, we have
BorderUnAuth(ar) = {β,ε}. Note that δ does not belong
to BorderUnAuth(ar) because none of the arcs in its pre-
set is an authorized node, i.e., δ can only receive rsc from β,
which is already an unauthorized node. Figure 5 is a modifi-
cation of Figure 4, in which ω and the arcs that lead to it are
represented with dashed lines, to pictorially denote the fact
that they do not belong to the original graph. At any rate,
if rsc is propagated to any node in BorderUnAuth(ar), it
is also propagated to ω with certainty, and, vice versa, if rsc
is propagated to ω, then it must have been propagated to at
least one node in BorderUnAuth(ar).

We now show how we can compute an even stricter up-
per bound for the value of UAR(ar), which, however, may
require some additional computations. This is the upper
bound we will use in the application example of Section 4.
Since we are dealing with hierarchies, we may suppose that
the nodes in the entire hierarchy are ordered, and we can in-
dex them in such a way that, given two values i and j, with
i < j, then there may be a direct or indirect relationship
from nodei to node nodej , but no relationship from nodej
to node nodei. Therefore, we can extract the sub-ordering of
the nodes in BorderUnAuth(ar) from the general ordering
of the nodes in the hierarchy and use a specific indexing from
1 to bua = |BorderUnAuth(ar)| when dealing only with the
nodes in BorderUnAuth(ar). Thus, we can rewrite Formula
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26 as follows:

UAR(ar) = P (
∨

i∈{1..bua}

(α → βi)) (27)

UAR(ar) can also be computed as the complement of the
probability that rsc does not propagate to any of the nodes
in BorderUnAuth(ar), i.e.,

UAR(ar) = 1− P (
∧

i∈{1..bua}

¬(α → βi)) (28)

where ¬(α → βi) denotes the fact that the resource does
not propagate from α to βi. Based on the properties of
conditional probabilities, we can also write:

UAR(ar) = 1− P (
∧

i∈{2..bua}

¬(α → βi)|¬(α → β1))

P (¬(α → β1)) (29)

As for the right-hand side of Formula 29, note that we
can compute an upper bound for P (α → β1) based on the
results of Section 3.4. So, we can compute a lower bound
for P (¬(α → β1)) = 1−P (α → β1), which leads to this first
majorization of UAR(ar):

UAR(ar) ≤ 1− P (
∧

i∈{2..bua}

¬(α → βi)|¬(α → β1))

(1− UB(α → β1)) (30)

We now show how a lower bound approximation can be
found for P (

∧
i∈{2..bua} ¬(α → βi)|¬(α → β1)). This is the

probability that none of the nodes βi in BorderUnAuth(ar)
except β1 receives rsc, conditioned on the fact that β1 has
not received rsc. Again, based on probability properties:

P (
∧

i∈{2..bua}

¬(α → βi|¬(α → β1)) =

1− P (
∨

i∈{2..bua}

(α → βi)|¬(α → β1)) (31)

i.e., it is the complement of the probability that at least
one of the nodes βi in BorderUnAuth(ar) (except β1) re-
ceives rsc, conditioned by the fact that β1 has not received
rsc. The problem now becomes finding an upper bound ap-
proximation for P (

∨
i∈{2..bua}(α → βi)|¬(α → β1)). This

upper bound approximation can be found by “ignoring” the
presence of β1 in the graph, i.e., by computing P (

∨
i∈{2..bua}

(α → βi)) in a new graph obtained from the original one by
removing β1. To provide an intuitive justification for the
fact that we obtain an upper bound, take the two sets of
paths α → β1 and α → β2 and suppose that some paths in
α → β1 have arcs in common with at least one path pathβ2 in
α → β2. We know that rsc has not reached β1 and that may
have happened because rsc did not follow one of the arcs in
pathβ2 in common with the paths in α → β1. So the prob-
ability of pathβ2 , once it is known that rsc has not reached
β1, is lower than the probability of pathβ2 if β1 simply did
not exist. This line of reasoning can be extended to all other
paths in α → β2 and to all other βis, with i ∈ 3..bua. So, we
can compute an upper bound approximation for UAR(ar)

as follows:

UAR(ar) ≤ 1− P ′(
∧

i∈{2..bua}

¬(α → βi))(1− UB(α → β1)

= 1− (1− P ′(
∨

i∈{2..bua}

(α → βi)))(1− UB(α → β1) (32)

where P ′(
∧

i∈{2..bua} ¬(α → βi)) and P ′(
∨

i∈{2..bua}(α →
βi)) are computed as if β1 did not exist. Note that
P ′(

∨
i∈{2..bua}(α → βi)) ≤ P (

∨
i∈{2..bua}(α → βi)), which

would be the probability computed by taking into account
β1 as well. As Formula (32) shows, we now need to find
an upper bound approximation for P ′(

∨
i∈{2..bua}(α → βi)),

which we can obtain by recursively applying the same tech-
nique until all the nodes in BorderUnAuth(ar) have been
taken into account. We use UB′(α → βi) to denote the
value of the upper bound obtained in this way.

For instance, take the OSN in Figure 4, for which we have
BorderUnAuth(ar) = {β,ε}. The resulting UB′s are re-
ported in Table 1. Note that, none of the values of UB′

is greater than the corresponding UB value, and the dif-
ference appears to be significant in some cases. Also recall
that node δ does not belong to BorderUnAuth(ar), so we
do not compute UB′ for it. In this example, node β pre-
cedes node ε. We first compute the value of UB′(α → β),
which actually coincides with UB(α → β), as β is not pre-
ceded by any node in BorderUnAuth(ar). To compute the
value of UB′(α → ε), we just need to remove β and all of
its incoming and outgoing arcs from the graph.

We can also interpret this in a different way. Suppose
we are computing an upper bound to the probability that
rsc reaches β or ε and we are looking for an upper bound
of the probability of rsc reaching ε. We should discard the
possibility that ε receives rsc from β, because β is already
an unauthorized node, so rsc would have already reached
the unauthorized region of the graph.

4. A SIMULATION EXAMPLE
We have conducted several experiments in order to eval-

uate the effectiveness of UAR, and specifically its upper
bound UB′ that we derived in Section 3.4. As a dataset, we
have considered a synthetic social network which has been
generated by randomly creating relationships of 34 different
types, among about 200 nodes.4 The obtained OSN has the
following features: 200 nodes, an average outdregee of 200
(note that this outdegree is for all the 34 relationship types),
and 24.800 relationships. We limit the OSN at 200 nodes
as we do not need a big graph to show the effectiveness of
UAR, as this mainly depends on nodes authorized by the
considered access control policies. We believe 200 nodes are
enough to include such a set. Moreover, since the key refer-
ence scenario for our measures is Enterprise 2.0, we do not
expect huge graphs as the ones of general purpose social net-
works, like Facebook. In the synthetic OSN, each arch has
randomly associated a relationship type and a trust value.
In contrast, the probabilities of propagation along the arcs
have been set up on the basis of the experiments.

In what follows, we report the results of two experiments,
in both of which we have considered an access control pol-
icy consisting of a single access condition of the form <v,

4We have exploited the RELATIONSHIP vocabulary avail-
able at http://purl.org/vocab/relationship.
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Figure 6: UAR values for ac=<v, Fof , d max, 0.5>

Fof , d max, t min>,5 where v and t min are fixed, whereas
d max varies. More precisely, in the experiment reported in
Figure 6 we have fixed t min to 0.5, i.e., <v, Fof , d max,
0.5>. The experiments have been conducted by consid-
ering two datasets. The first is a synthetic OSN, called
OSN withLowProb, where relationships, nodes and trust
values have been generated as described above and all the
arcs have a low probability of propagation (i.e., less than
0.1), to simulate an OSN with a very low probability of
passing information in an unauthorized way. Figure 6 con-
firms what we expect as the UAR general trend. In general,
if a resource is publicly available, the obvious consequence
is that no illegal propagation is enacted. As such, the cor-
responding UAR value is close to zero. Figure 6 gives us
a proof of this. As the depth of the rule increases most of
the 200 nodes of the OSN become authorized by the access
condition, with always less users that are no authorized to
access the resource. The decreasing of unauthorized users
reflects in UAR, as this also reduces.

In the second dataset, called OSN withHighProb, we
have set to an high level (i.e., a value greater than 0.9) the
probability of propagation of about 10% of the nodes in the
OSN. The aim of this experiment is to show how UAR de-
tects this anomaly. As such, rather than randomly selecting
the nodes whose probability have to be increased, we de-
cided to select them in a particular area, to check if UAR
shows this anomaly. In particular, we select 20 nodes among
those with distance 5 to node v. As expected, the UAR mea-
sure detects these nodes, as confirmed by the jump between
trends in Figure 6.

5. CONCLUSIONS AND FUTUREWORK
Access control for OSNs is becoming an urgent need and

this has resulted in the definition of many access control
models and mechanisms. Almost all of them exploit topology-
based access control, according to which confidentiality re-
quirements wrt resource release are defined in terms of the
relationships in the network, their depth and trust level.
Although topology-based access control is very powerful in
terms of the access control requirements it can model, it is
also true that, on the other hand, it may be difficult for
the user specifying a policy to clearly understand its effects

5Note that, as the relationship types have been uniformly
distributed, there exist an average of 730 arcs of Fof type.

and the potential risks of unauthorized information leakage
it may cause. To address this issue, in this paper, we have
proposed a probabilistic-based approach to estimate illegal
leakage of resources in an OSN where access control is reg-
ulated according to the topology-based paradigm.

We believe this represents just the core component of a
more comprehensive framework to handle illegal information
flow in OSNs. As such, we plan to extend this work along
several directions. A first direction regards the investigation
of several functions to compute the probability of resource
propagation, taking into account different dimensions of the
social network graph (e.g., user reputation, relationship se-
mantics) as well as resource properties (e.g., content, his-
tory) . Moreover, we plan to extend the probability model
such to consider also multigraph where indirect relationships
can be represented with paths consisting of edges having dif-
ferent relationship types.
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