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Abstract—Background. Companies commonly invest major
effort into removing, respectively not introducing, technical debt
issues detected by static analysis tools such as SonarQube,
Cast, or Coverity. These tools classify technical debt issues into
categories according to severity, and developers commonly pay
attention to not introducing issues with a high level of severity
that could generate bugs or make software maintenance more
difficult.
Objective. In this work, we aim to understand the diffuseness of
Technical Debt (TD) issues and the speed with which developers
remove them from the code if they introduced such an issue.
The goal is to understand which type of TD is more diffused
and how much attention is paid by the developers, as well as
to investigate whether TD issues with a higher level of severity
are resolved faster than those with a lower level of severity. We
conducted a case study across 78K commits of 33 Java projects
from the Apache Software Foundation Ecosystem to investigate
the distribution of 1.4M TD items.
Results. TD items introduced into the code are mostly related
to code smells (issues that can increase the maintenance effort).
Moreover, developers commonly remove the most severe issues
faster than less severe ones. However, the time needed to resolve
issues increases when the level of severity increases (minor issues
are removed faster that blocker ones).
Conclusion. One possible answer to the unexpected issue of
resolution time might be that severity is not correctly defined
by the tools. Another possible answer is that the rules at an
intermediate severity level could be the ones that technically
require more time to be removed. The classification of TD items,
including their severity and type, require thorough investigation
from a research point of view.

Index Terms—Technical Debt issues, SonarQube, Violations

I. INTRODUCTION

Companies commonly spend time to improve the quality
of the software they develop, investing effort into refactor-
ing activities aimed at removing technical issues believed to
impact software qualities. Technical issues include any kind
of information that can be derived from the source code and
from the software process, such as usage of specific patterns,
compliance with coding or documentation conventions, archi-
tectural issues, and many others.

Technical Debt (TD) is a metaphor from the economic
domain that refers to different software maintenance activities
that are postponed in favor of the development of new features
in order to get short-term payoff [1]. Just as in the case of
financial debt, the additional cost will be paid later. The growth
of TD commonly slows down the development process [1], [2].

Different types of TD exist: requirements debt, code debt,
architectural debt, design debt, test debt, build debt, documen-
tation debt, infrastructure debt, versioning debt, and defect
debt [2].

Some types of TD, such as ”code TD”, can be measured
by means of static analysis tools, which is why several
companies have started to adopt Code TD analysis tools such
as SonarQube, Cast, and Coverity, investing a relevant amount
of their budget into refactoring activities recommended by
these tools. This is certainly a very encouraging sign, where a
software engineering research topic receives balanced attention
from both communities.

SonarQube is one of the most frequently used open source
Code TD analysis tools [3]. It allows Code TD management
by monitoring the evolution of TD and alerting developers if
certain TD items increase beyond a specified threshold or, even
worse, grow out of control. TD monitoring can also be used
to support the prioritization of repayment actions where TD
items are resolved (e.g., through refactoring) [4]. SonarQube
has been adopted by more than 85K organizations 1, including
nearly 15K public open-source projects 2. SonarQube analyzes
code compliance against a set of rules. If the code violates a
rule, SonarQube adds the time needed to refactor the violated
rule as part of the technical debt creating a ”code issue”. Even
if developers are not sure about the usefulness of the rules,
they do pay attention to their categories and priorities and
tend to remove violations related to rules with a high level
of severity [5] in order to avoid the possible risk of faults
[5], [6].

In this work, we aim to understand the diffuseness resolution
time of TD items of Java projects in the Apache Software
Foundation (ASF) Ecosystem. The goal is to understand which
type of TD is more diffused and how much attention is paid
by the ASF developers, as well as to investigate whether TD
items with a higher level of severity are resolved faster than
those with a lower level of severity.

Structure of the paper. Section II describes the basic
concepts underlying this work and Section III some related
work done by researchers in recent years. In Section IV, we
describe the design of our case study, defining the research

1https://www.sonarqube.org
2https://sonarcloud.io/explore/projects



questions, metrics, and hypothesis, and describing the study
context with the data collection and data analysis protocol. In
Section V, we present the achieved results and discuss them
in Section VI. Section VII identifies the threats to the validity
of our study, and in Section VIII, we draw conclusions and
give an outlook on possible future work.

II. BACKGROUND

Technical Debt is one of the most recent research topic
in Software Maintenance and Evolution [7]. In this Section,
we introduce the concept of Code Debt and briefly describe
SonarQube.

A. Code Debt

Li et al. [8] conducted a systematic mapping study to under-
stand the concept of Technical Debt and create an overview
of the current state of the art regarding the management of
Technical Debt (TD). They proposed a classification of ten
types of Technical Debt at different levels, derived from the
selected studies (96). In their classification, they included:
Requirement TD, Architectural TD, Design TD, Code TD,
Test TD, Build TD, Documentation TD, Infrastructure TD,
and Versioning TD. According to the definition of Li et al. [8],
Code Debt is related to ”poorly written code”, avoiding all the
”best coding practices” or ”coding rules”. Fowler [9] defined
bad code smells as symptoms of poor design. Code violations
can be considered coding rules.

B. SonarQube

SonarQube is one of the most common open-source static
code analysis tools for measuring code debt. SonarQube is
provided as a service from the sonarcloud.io platform or can
be downloaded and executed on a private server.

SonarQube calculates several metrics such as number of
lines of code and code complexity, and verifies the code’s
compliance against a specific set of ”coding rules” defined for
most common development languages. Moreover, it defines
a set of thresholds (”quality gates”) for each metric and
rule. In case the analyzed source code violates a coding
rule, or if a metric is outside a predefined threshold (also
named ”gate”), SonarQube generates a ”TD issue”. The time
needed to remove these issues (remediation effort) is used
to calculate the remediation cost and the technical debt.
SonarQube includes Reliability, Maintainability, and Security
rules. Moreover, SonarQube claims that zero false positives
are expected from the Reliability and Maintainability rules,
while there could be some false positives 3.

Reliability rules, also named ”bugs”, create TD issues
that ”represent something wrong in the code” and that will
soon be reflected in a bug. ”Code smells” are considered
”maintainability-related issues” in the code that decrease code
readability and code modifiability. It is important to note that
the term ”code smells” adopted in SonarQube does not refer

3SonarQube Rules:https://docs.sonarqube.org/display/SONAR/Rules
Last Access: Dec.2018

to the commonly known term code smells defined by Fowler
et al. [9] but to a different set of rules.

SonarQube also classifies the rules into five severity levels 4:

• BLOCKER: ”Bug with a high probability to impact the
behavior of the application in production: memory leak,
unclosed JDBC connection.” SonarQube recommends im-
mediately reviewing such an issue

• CRITICAL: ”Either a bug with a low probability to impact
the behavior of the application in production or an issue
which represents a security flaw: empty catch block, SQL
injection” SonarQube recommends immediately review-
ing such an issue

• MAJOR: ”Quality flaw which can highly impact the de-
veloper productivity: uncovered piece of code, duplicated
blocks, unused parameters”

• MINOR: ”Quality flaw which can slightly impact the
developer productivity: lines should not be too long,
s̈witchs̈tatements should have at least 3 cases, ...”

• INFO: ”Neither a bug nor a quality flaw, just a finding.”

The complete list of violations can be found in the online raw
data (Section IV-E).

III. RELATED WORK

In this Section, we report the most relevant works on the
investigation about the diffuseness of TD issues. To the best
of our knowledge, the vast majority of the papers investigate
the distribution and evolution of code smells and none of the
papers investigates SonarQube violations.

Vaucher et al. [10] considered in their study God Class code
smells, focusing on whether they affect software systems for
long periods of time and making a comparison with whether
the code smell is refactored.

Olbrich et al. [11] investigated the evolution of two code
smells, God Class and Shotgun Surgery. They found that the
distribution over time of these code smells is not constant; they
increase during some periods and decrease in others, without
any correlation with project size.

In contrast, Chatzigeorgiou and Manakos [12] investigated
the evolution of several code smells and found that the number
of instances of code smells increases constantly over time. This
was also confirmed by Arcoverde et al. [13], who analyzed the
longevity of code smells.

The longevity of code smells in the source code can lead to
several issues [14]. It is interesting to understand the reason for
this identified by Tufano et al. [14]: They found that the code is
affected by code smells from the beginning of the development
process, while some code smells are also introduced during
refactoring activities. Moreover, Tufano et al. also report that
close to 80% of the code smells are never removed from
the code, and that those code smells that are removed are
eliminated by removing the smelly artifact and not as a result
of refactoring activities.

4SonarQube Issues and Rules Severity:’
https://docs.sonarqube.org/display/SONAR/Issues Last Access: Dec.2018



Palomba et al. [15] conducted a study on 395 versions of
30 different open-source Java applications, investigating the
diffuseness of 13 code smells and their impact on two software
qualities: change- and fault-proneness. They analyzed 17.350
instances of 13 code smells, which were identified by applying
a metric-based approach. Out of the 13 code smells, only seven
were highly diffused smells; their removal would result in
great benefit to the software in terms of change proneness. In
contrast, the benefit regarding fault proneness was very limited
or non-existent. So programmers should keep an eye on these
smells and do refactoring where needed in order to improve
the overall maintainability of the code.

Digkas et al. [16] investigated the evolution of Technical
Debt over five years at the granularity level of weekly snap-
shots. They considered as context sixty-six open-source soft-
ware projects of the Apache ecosystem. Moreover, they char-
acterized the lower-level constituent components of Technical
Debt. The results showed a significant increase in terms of
size, number of issues, and complexity metrics of the analyzed
projects. However, they also discovered that normalized Tech-
nical Debt decreased as the project metrics evolved. Digkas et
al. [4] also investigated how Technical Debt accumulates as
a result of software maintenance activities. As context, they
selected fifty-seven open-source Java software projects from
the Apache Software Foundation and analyzed them at the
temporal granularity level of weekly snapshots, also focusing
on the types of issues that are fixed. The results showed that
the largest percentage of Technical Debt repayment is created
by a small subset of issue types.

Amanatidis et al. [17] investigated the accumulation of
Technical Debt in PHP applications focusing on the relation
between debt amount and interest to be paid during corrective
maintenance activities. They analyzed ten open-source PHP
projects from the point of view of corrective maintenance
frequency and corrective maintenance effort related to interest
amount and found a positive correlation between interest and
the amount of accumulated Technical Debt.

IV. CASE STUDY DESIGN

We designed our empirical study as a case study. In this
Section, we describe the case study design, including the
goal and the research questions, the study context, the data
collection, and the data analysis procedure.

A. Goal and Research Questions

The goal of this study was to identify the diffuseness of
Technical Debt issues in the source code, considering also the
type of Technical Debt issues and their severity.

Based on the aforementionsd goal, we derived the following
Research Questions (RQs):

RQ1: What is the diffuseness of Technical Debt issues in
software systems?
This is a preliminary research question aimed at assessing to
what extent software systems are affected by Technical Debt
issues.

RQ2: What is the diffuseness of Technical Debt issues
in software systems considering different types and levels of
severity?
With this RQ, we considered different types and levels of
severity for each TD item, in order to determine how the rules
are grouped between different values of severity and type, and
what the relative distribution of different levels of severity and
different types is in the analyzed projects.

RQ3: What is the lifespan of Technical Debt issues?
With this RQ, we aim to investigate the time needed to resolve
different TD issues, so as to understand which issues are
resolved faster than others.

B. Context

We selected projects for this study based on a ”criterion
sampling” [18]. The selected projects had to fulfill all of the
following criteria:

• Developed in Java
• Older than three years
• More than 1000 commits
• More than 100 classes
• Usage of issue tracking systems with at least 100 issues

Moreover, as recommended by Nagappan et al. [19], we
also tried to maximize diversity and representativeness by
considering a comparable number of projects with respect to
project age, size, and domain.

Based on these criteria, we selected 33 Java projects from
the Apache Software Foundation (ASF) repository 5. This
repository includes some of the most widely used software
solutions. The available projects can be considered industrial
and mature, due to the strict review and inclusion process
required by the ASF. Moreover, the included projects have
to keep on reviewing their code and follow a strict quality
process6.

In Table I, we report the list of the 33 projects we considered
together with the number of analyzed commits, the project size
(LOC) of the last analyzed commits, and the total number of
TD issues.

C. Data Collection

All selected projects were cloned from their Git repositories.
Each commit was analyzed for TD items using SonarQube. We
used SonarQube’s default rule set. We considered as TD items
all the violations, called Squids (S), suggested to be refactored
by SonarQube.

As variables we extracted: SonarQube violations (Squid)
and Issue Remediation time.

We exported the data by means of SQ APIs in a csv file.
The data is available in the replication package (Section IV-E).

5http://apache.org
6https://incubator.apache.org/policy/process.html



D. Data Analysis

For RQ1, we first determined the total number of TD items
in each commit and then in each project. We also normalized
the #TD issues in a commit by dividing their number by
KLOC. Moreover, in order to see how diffused the items are
within the commits, we inspected the percentage of classes
with at least one TD item.

In addition, we examined the correlations between the
number of TD items and the LOC, #classes, and #methods in
a commit. We used the Spearman rank correlation coefficient
ρ [20], which measures how well a monotonic function can be
fitted between two groups of values measured from the same
samples. This is a non-parametric method and the values of
ρ range between -1 and 1, where 1 means perfect positive
monotonic association, -1 means perfect negative monotonic
association, and 0 means there is no monotonic association
between the groups.

For interpreting the other values of ρ, we used the fol-
lowing guideline suggested by Cohen [21]: no correlation
if 0 ≤ ρ < 0.1, small correlation if 0.1 ≤ ρ < 0.3,
medium correlation if 0.3 ≤ ρ < 0.5, and large correlation
if 0.5 ≤ ρ ≤ 1. Corresponding limits apply for negative
correlation coefficients.

The statistical significance of the correlations was inspected
using p-values. The null-hypothesis H0 was that there is no
association between the sets. It was rejected if the p-value was
smaller than 0.01; if it was higher, we concluded that there is
an association between the groups.

RQ2 investigates the diffuseness of different TD item types
and severity levels. The approach used in RQ1 was applied to
both TD item type and severity. In addition, we determined
how the rules are divided between different values of severity
and type, and what the relative distribution of different levels
of severity and different types is in the inspected projects.

RQ3 examines the lifespan of TD items. We defined the
number of days it took to remove an introduced TD item by
analyzing subsequent commits using SonarQube. The results
are presented for both type and severity of the item. The results
are visualized using boxplots. and are presented for both type
and severity of the items.

E. Replicability

In order to allow our study to be replicated, we have
published the complete raw data in the replication package 7.

V. RESULTS

In this Section, we introduce the results of the analysis.

A. RQ1: diffuseness of Technical Debt items

Out of 266 TD items monitored by SonarQube, 162 were
detected in the analyzed projects. For reasons of space, we
report only the 40 most frequent ones.

The complete list is available in the replication package
(Section IV-E). The distribution of the number of TD item

7http://www.tut.fi/tase/raw data/2019-TechDebtDiffuseness.zip

TABLE I: Description of the selected projects

Project Name
Analyzed Commits Last

Commit
LOC

#TD Items
(Thousands)

# Timeframe
Accumulo 2,641 2011/10 - 2013/09 340,670 985,373
Ambari 13,397 2011/08 - 2015/11 801,712 135,522
Atlas 2,336 2014/11 - 2018/06 204,418 9,389
Aurora 4,012 2010/04 - 2018/06 105,952 2,778
Batik 2,097 2000/10 - 2002/06 151,067 21,760
BCEL 1,324 2001/10 - 2018/05 43,850 5,387
Beam 2,865 2014/12 - 2016/07 140,489 15,415
BeanUtils 1,192 2001/03 - 2018/06 35,769 3,572
Cocoon 10,210 2003/02 - 2007/02 398,710 145,344
Codec 1,726 2003/04 - 2018/06 21,936 1,378
Collections 2,982 2001/04 - 2018/10 66,504 10,054
Commons
CLI

896 2002/06 - 2018/02 9,579 9,145

Commons
Configuration

2,895 2003/12 - 2018/06 87,712 5,685

Commons
Daemon

980 2003/09 - 2018/05 4,616 251

Commons
DBCP

1,861 2001/04 - 2018/06 26,447 3,169

Commons
DbUtils

645 2003/11 - 2018/05 8,456 170

Commons Di-
gester

2,145 2001/05 - 2018/05 30,965 3,498

Commons
Exec

617 2005/07 - 2018/05 4,815 156

Commons
FileUpload

922 2002/03 - 2018/05 6,328 272

Commons
HttpClient

2,867 2005/12 - 2018/06 74,411 9,102

Commons IO 2,118 2002/01 - 2018/06 33,534 2,913
Commons
Jelly

1,939 2002/02 - 2018/05 28,688 3,501

Commons
JEXL

1,551 2002/04 - 2018/05 28,508 5,085

Commons
JXPath

597 2001/08 - 2018/05 28,688 1,656

Commons
Net

2,088 2002/04 - 2018/05 30,965 12,902

Commons
OGNL

608 2011/05 - 2018/06 22,567 1,285

Commons
Validator

1,339 2002/01 - 2018/05 19,966 934

Commons
VFS

2,067 2002/07 - 2018/05 32,462 2,534

Felix 596 2005/07 - 2006/10 85,385 3,189
HttpCore 1,941 2005/02 - 2017/08 62,149 4,102
Santuario 2,697 2001/09 - 2018/06 125,329 11,844
SSHD 1,370 2008/12 - 2018/06 96,664 3,225
ZooKeeper 411 2014/07 - 2018/06 74,232 1,992
Sum 77,932 5,194,399 1,422,599

introductions is illustrated in Figure 1. In the figure, the TD
item squids on the x-axis are rule identifiers from Sonar-
Qube, except for item db, which is a rule called common-
java:DuplicatedBlocks.

Table II contains the results for both RQ1 and RQ3. Under
the title ”Diffuseness of TD items”, we report the percentage
of affected commits for the 40 most frequently introduced TD
items. The diffuseness between commits differs greatly. For
example, there are 19 TD items that affect 90% or more of
the analyzed commits, while 28 can be found in 10% of the
commits or less. The 40 most frequently introduced TD items
are diffused to the majority of the commits, with the exception



TABLE II: The diffuseness, correlations, and issue resolution times for the 40 most introduced TD items (RQ1 and RQ3)

SQ rule ID

RQ1 RQ3
Diffuseness of TD Items Correlation between TD Items and Commit Size Issue Resolution Time

%Affected Avg Max ρ with ρ with ρ with AVG max stdevCommits Instances Instances #Classes #Methods LOCs #Days #Days
S00112 98 1,180 29,821 0.72 0.77 0.76 178 6,211 362
S1128 83 689 30,170 0.49 0.55 0.54 114 5,936 235
S1130 94 979 30,691 0.79 0.82 0.83 205 6,101 354
S1166 99 850 23,279 0.71 0.73 0.74 232 6,267 472
S1192 99 1,006 18,689 0.72 0.75 0.77 263 6,211 533
S134 99 888 26,252 0.76 0.82 0.81 219 5,964 366
S1213 98 690 18,717 0.75 0.78 0.75 220 6,273 473
db 99 452 12,680 0.77 0.84 0.80 181 5,970 452
S106 94 552 19,265 0.35 0.44 0.43 223 5,936 455
S1541 99 539 17,476 0.73 0.81 0.79 261 6,211 396
S1133 90 390 13,670 0.29 0.36 0.32 215 5,938 391
S1132 92 593 14,733 0.72 0.80 0.77 291 5,834 494
S1124 84 535 16,292 0.57 0.64 0.62 302 6,015 453
S125 97 429 12,984 0.63 0.70 0.69 305 6,096 545
S1197 93 424 13,563 0.20 0.27 0.26 314 6,211 510
S1123 77 293 13,619 0.37 0.45 0.41 226 6,099 418
S1186 93 374 12,089 0.66 0.75 0.67 289 5,938 544
S00117 89 335 10,169 0.61 0.65 0.69 312 5,797 571
S1312 72 318 11,163 0.68 0.72 0.70 261 5,938 492
S1104 80 315 9,824 0.67 0.74 0.69 321 5,529 472
S00108 83 190 11,117 0.57 0.62 0.61 222 6,266 512
S00122 77 225 4,078 0.61 0.62 0.61 443 6,268 909
S00116 88 286 5,325 0.58 0.62 0.63 415 6,266 792
S1226 90 244 6,041 0.59 0.68 0.64 298 5,936 507
S1135 95 179 3,787 0.80 0.80 0.81 205 5,711 435
S1155 80 284 10,442 0.78 0.82 0.79 279 6,095 320
S1151 86 248 8,092 0.65 0.70 0.70 310 5,791 424
S00115 72 188 6,391 0.69 0.75 0.77 264 5,285 421
S1199 78 146 4,879 0.48 0.54 0.53 341 5,648 506
S1181 83 207 7,497 0.57 0.61 0.59 373 6,101 490
S2131 65 167 5,560 0.60 0.65 0.65 251 3,362 305
S1117 88 180 4,634 0.78 0.85 0.80 314 6,211 570
S00107 66 152 5,389 0.85 0.86 0.86 235 3,459 286
S00119 31 41 978 0.48 0.51 0.48 49 2,548 110
S1172 89 124 3,758 0.73 0.80 0.78 229 5,938 337
S1148 85 145 4,985 0.66 0.71 0.72 286 5,935 396
S1141 81 154 5,372 0.66 0.74 0.74 282 5,938 340
S00105 72 67 1,392 0.50 0.57 0.56 268 4,947 577
S1066 88 142 4,956 0.71 0.77 0.75 314 5,938 469
S1161 76 111 3,589 0.24 0.32 0.27 600 5,938 951
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Fig. 1: Distribution of the 40 most frequently introduced TD items (RQ1)
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Fig. 2: Distributions of TD items (RQ1)

of S00119, which can be found only in 31% of the commits.

Figure 1 shows that the distribution varies significantly
between items. Three items were introduced more than 100K
times, while seven TD items were introduced between 50K
and 100K times, 33 between 10K and 50K times, and 67 were
introduced less than 1K times. Among the ones introduced less
than 1K times, several were introduced only in a few projects
and less than 10 times.

The diffuseness of the TD items is visualized using boxplots
in Figure 2. Boxplots are a common way of displaying
distribution by visualizing the minimum, first quartile (Q1),
median, third quartile (Q3), and maximum of the data. The
box marks the inter quartile range (IQR = Q3-Q1) and contains
50% of the data. The orange line inside the box is the median.
We considered outliers all values outside the range ±1.5*IQR.
The black lines are called whiskers and represent the minimum
and maximum, which in this case are the smallest/largest
values not considered as outliers. The green dot marks the
mean of the data. Figure 2 consists of four boxplots reporting
#TD items per commit, #TD items per project, #TD items
per KLOC per commit, and percentage of affected classes per
commit. For reasons of readability, each boxplot contains only
the 40 most frequently introduced TD items and outliers are
not included in the boxplots. The complete list is available in
the replication package (SectionIV-E).

As for the number of TD items per commit in Figure 2a,
it can be observed that most of the boxplots are right-skewed.

This means that larger values are distributed over a larger range
while small values are located more closely to each other.
Especially items S00112, S1166, S1192, S134, S1132, and
S00122 have a wide distribution. However, not all of the most
frequently introduced items have a wide range; for example,
items S1128, S1133, and S1123 are each introduced in the
systems over 35K times, but they have relatively low medians
and narrow distributions. Many of the TD items have a median
close to zero, this being true especially for the less frequently
introduced items.

Taking into account the number of TD items per project
in Figure 2b, we notice that means are generally larger than
maximums. This is caused by large outliers. The boxplot
suggests that some TD items are concentrated on certain
projects, as the distribution is narrower when inspecting items
per project versus items per commit; for example, items S1130
and S134. When we consider the TD items per thousands
of lines of code (KLOC) in Figure 2c, we notice that the
distribution of TD items is similar to what it was before
normalization. However, there are fewer large outliers. The
remarkable exceptions to the similarity of distributions are
S1130 and S134, which have narrower distributions.

The percentage of affected classes per commit is presented
in Figure 2d. In general, the percentage is low, as the highest
median is 15% and the highest maximum 35%. The data has
a limited number of outliers. There are also several items for
which the distribution is not so remarkably right-skewed; for



example, S00112, S1192, and db.
In addition to inspecting the distributions of the TD items,

we determined how well #TD items in a commit correlate with
#classes, #methods, and LOC in that commit. The results are
presented in Table II under the title ”Correlation between TD
Items and Commit Size”. In the table, large correlations are
marked in bold and medium correlations in italics. All p-values
were under 0.01 except for two pairs: S2388 with #classes, and
S2133 with LOCs. Neither of these two cases is one of the 40
most frequently introduced TD items.

The majority of the 40 most frequently introduced SQ rules
have a strong positive correlation with all of the inspected
system’s size attributes. The exceptions are S106 and S1123,
which have medium correlation, and items S1197, S1161,
and S1149 with low or medium correlation. Both S1161 and
S1149 have a narrow distribution with the median close to
zero, whereas S1197 has a wider distribution when commits
are inspected but a narrow distribution when projects are
inspected. The correlations of the less frequently introduced
rules were not as consistently high as those of the most
frequently introduced rules.

B. RQ2: Diffuseness of TD items by type and severity

The distribution of SQ rules and introduced TD items is
presented in Table III under the title ”Distribution”. When
considering the type of items, the distribution is unbalanced.
For example, 96% of all the items are code smells, even though
73% of the rules detected code smells by SonarQube. It is also
worth noting that only 1% of the items were bugs, even though
23% of the rules were labeled as such.

The distribution for severity levels is more even. Most of
the items are either minor or major items, as info, critical, and
blocker constitute only 12% of the items. The distribution of
rules and introduced items is similar.

The distribution of TD items in the analyzed commits
considering type and severity of the items is presented in
Table III under the title ”Percentage”. Regardless of whether
considering severity or type, TD items are well distributed
across the inspected commits. The only value affecting less
than 93% of the commits is the severity level blocker, which
impacts 86% of the commits.

Figure 3 shows the different distributions of all severity and
type combinations by means of boxplots. Each row in the
figure contains the data for a single type indicated on the left.
In each plot, the distribution is drawn for all TD items of
the type and separately for each severity level. Corresponding
columns in the plots are visualizing the same aspect of the
data and it is identified below the last plot. The type-severity
combinations are drawn only when the used rule set has
associated rules with that type and severity. As example, we
do not draw the minor and info severity boxplots for bugs
since we do not have rules in that level of severity.

When considering the number of TD items per project or
commit, we notice that minor and major are the most diffused
severity levels. On the other hand, the blocker level is hardly
diffused at all, even though it affects 86% of the analyzed

commits. In addition to blocker level, the info level is also
diffused poorly. These two were the least frequently introduced
levels, making up a total of up to 5% of all introduced items.
The distribution is similar when projects are considered.

In general, code smells are much more diffused than bugs or
vulnerabilities regardless of the visualized aspect. Comparing
bugs and vulnerabilities reveals that bugs are a little less
diffused than vulnerabilities. The normalized results reveal
that there can be tens of code smells per KLOC but bugs
and vulnerabilities are not found in every KLOC. The bug
and vulnerability types have medians close to zero in all
boxplots, even though they both affect at least 93% of the
analyzed commits. The normalizing does not remarkably affect
the distributions of the type code smell. For the bug type,
the normalization reveals that the amount of critical bugs is
relatively higher than the bugs of different severity level.

The results are similar when inspecting the percentage of
affected classes per commit. The code smells are most diffused
and in some cases there are major code smells in every class of
the commit and the median is 31%. The bug and vulnerability
types affect only a few percent of the classes regardless of the
severity level.

The correlation coefficients between the value of sever-
ity/type and different aspects of the systems’ size are presented
in Table III under the title ”Correlation”. All severity and type
values have large correlations with all inspected size measures,
and all of the p-values are zero.

To see the ratio of different type and severity values in
a project, the average distributions of level of severity and
type are visualized in Figure 5. When considering the severity
levels, the majority of projects have most of their TD items
classified as minor or major, as expected based on their
distribution. In addition, the number of critical and blocker
items is less than 10% of all items. However, there are projects
that have a higher rate of items with a high level of severity;
for example, Collections and Commons IO have a rather high
number of critical items, while BeanUtils has a high rate of
both blocker and critical items.

When considering the type of the TD items, we see that
almost all of them are code smells and that, for example, the
project Codec contains code smells almost exclusively. The
projects Commons Net and Zookeeper have a relatively high
rate of vulnerabilities.

C. RQ3: What is the lifespan of TD issues

The number of days needed to fix TD items grouped by type
and severity is presented in Table IV. The minimum number
of days needed to remove an item is not presented, as it was
0 for all values. When considering the severity of an item,
blockers have a notably higher median and average than the
other levels. The critical, major, and minor levels are similar
in terms of all reported measures. The info level differs from
these in terms of the standard deviation, as for the info level
this is 405, while the other values have a standard deviation
over 470. As for the type of the items, bugs and vulnerabilities



TABLE III: Distribution of TD Items per type and severity (RQ2)

Distribution Percentage Correlation

Value #
Avail-
able
rules

# De-
tected
rules

#Introduced
items

% of
introduced
TD items

% affected
commits

avg.
#in-

stances

max in-
stances

ρ with
#Classes

ρ with
#Meth-

ods

ρ with
LOCs

Severity

Info 3 2 69,516 4 98 569 15,699 0.76 0.78 0.78
Minor 88 31 729,852 37 99 6,559 161,880 0.78 0.84 0.83
Major 118 79 988,036 51 99 9,518 259,749 0.77 0.86 0.82

Critical 42 42 144,394 7 99 1,321 33,979 0.72 0.76 0.75
Blocker 15 8 18,101 1 86 229 8,214 0.58 0.63 0.61

Type
Code Smell 184 118 1,869,397 96 99 17,356 451,893 0.79 0.86 0.84

Bug 64 37 22,690 1 96 205 6,388 0.59 0.63 0.60
Vulnerability 18 7 57,812 3 93 636 17,837 0.70 0.76 0.74
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Fig. 4: Distribution of open TD items (RQ2)

are similar to each other. While code smells have a median of
60, bugs and vulnerabilities have a median of around 100.

The distribution of the open days is represented in Figure 6

TABLE IV: Number of days needed to resolve TD items
(RQ3)

Value Median
time

Avg.
time

max Stdev

Severity

Info 61 212 5938 405
Minor 46 238 6273 482
Major 72 259 6266 475

Critical 75 257 6267 480
Blocker 342 358 6101 486

Type
Code Smell 60 248 6273 476

Bug 108 271 5775 425
Vulnerability 102 310 5935 481

for all combinations of severity and type similarly to Figure 3,
with the exception that the range on x-axis is shared for all
plots. Major code smells have a significantly higher median
than any other combination. It has median of 374, while
the other combinations have medians around 100. All of the
boxplots are right-skewed, even tough all of the means are
below Q3 and have a value around 300 days.
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Fig. 6: The distribution of the number of days it takes to fix
an introduced TD item based on item severity and type (RQ3)

VI. DISCUSSION

There are rules which are never violated by the selected
projects (36% of code smells, 42% of bugs, and 61% of
vulnerabilities). Some rules are almost never found in the
selected projects, while the most common rules are violated
(generate a TD item) in almost every commit.

The most commonly introduced TD items correlate strongly
with project size (LOC, #methods, and #classes). However, the
normalization of the number of rules introduced per KLOC per

commit did not have any significant impact on the distribution
of the results.

As expected, since 73% of all detected rules are classified
as code smells, 96% of the violated rules (TD items) are
also code smells. As for the different severity levels of the
rules, different projects violate rules with all severity levels.
However, as might be expected, rules with the severity level
blocker are slightly less diffused across the inspected commits
than less severe ones.

Unexpectedly, the distribution of the severity level rules has
a bell shape. We expected that the number of rules would
decrease at higher levels of severity.

All levels of severity and all types have a strong correlation
with the size-related measures LOC, #methods, and #classes.

The most unexpected result is related to the resolution time
for the TD items. The time elapsed between the introduction
and the removal of TD items classified as blockers is higher
than that for other levels of severity. We can assume that this is
because they are harder to fix than TD items with lower levels
of severity, or they may be harder to detect, or developers
might not even consider them as important as other issues
that must be removed. When considering type and severity,
the items with type code smell and severity major take the
longest time to get resolved.

VII. THREATS TO VALIDITY

Taking into account Construct Validity, we adopted the
measures detected by SonarQube, since our goal was to
validate the diffuseness of the rules produced by this tool.
We are aware that the detection accuracy of some rules might
not be perfect, but we tried to replicate the same conditions



adopted by practitioners when using the same tool. Threats
to Internal Validity concern factors that could have influenced
the results obtained. Some issues detected by SonarQube were
duplicated, reporting the issue violated in the same class and
in the same position but with different resolution times. We
are aware of this fact, but we did not remove such issues
from the analysis since we wanted to report the results without
modifying the output provided by SonarQube.

Threats to External Validity concern the generalization of
the results obtained. We analyzed a relatively large number
of projects and commits, and tried to select different projects
with different characteristics. However, we are aware that other
projects might present slightly different results.

VIII. CONCLUSION

In this paper, we studied the Code Technical Debt distribu-
tion of 33 Java systems from the Apache Software Foundation.
We analyzed nearly 80K commits and mined more than 1.4M
Technical Debt items reported by SonarQube. From this work
we learned that a very small minority of problem types is
responsible for the vast majority of estimated Technical Debt.
As expected, the number of issues grows along with the size
of the project.

As also highlighted by [16], some of the most frequently
introduced TD issues are related to low-level coding issues,
which could be decreased in several cases with good IDE sup-
port (e.g., duplicated strings) or with good IDE customization
(e.g., two variables declared on the same line).

Although we expected most severe rules (blocker and crit-
ical) to be removed faster than less severe ones, the time
elapsed between the introduction and the removal of the issues
increased along with their severity.

Even though this study was conducted on a relatively large
data set, we are aware that our results do not represent
the whole Apache Software Foundation ecosystem. It would
therefore be very valuable to replicate this study in larger
contexts or in other open-source and industrial projects.

We are currently investigating the diffuseness and the impact
of TD Issues in cloud-native applications [22], including
SonarQube issues [23], patterns [24] and anti-patterns [25]
[26] [24]. Future works include user studies on the investi-
gation of the perceived harmfulness of TD Issues, with an
approach similar to [6], understanding if the SonarQube TD
issues can be used to predict external qualities such as the
perceived reliability with approaches similar to these applied
in [27] and [28].
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