From Monolithic Systems to Microservices: A Decomposition

Keywords:

Abstract:

Framework based on Process Mining

Davide Taibi®?, Kari Systi®P

TASE - Tampere Software Engineering Research Group

Tampere University. Tampere Finland
davide.taibi@tuni.fi, kari.systa@tuni.fi

Microservices, Cloud-Native, Microservice Slicing, Microservice Decomposition, Microservice Migration

Decomposition is one of the most complex tasks during the migration from monolithic systems to microser-
vices, generally performed manually, based on the experience of the software architects. In this work, we
propose a 6-step framework to reduce the subjectivity of the decomposition process. The framework provides
software architects with a set of decomposition options, together with a set of measures to evaluate and com-
pare their quality. The decomposition options are identified based on the independent execution traces of the
system by means of the application of a process-mining tool to the log traces collected at runtime. We validated
the process, in an industrial project, by comparing the proposed decomposition options with the one proposed
by the software architect that manually analyzed the system. The application of our framework allowed the
company to identify issues in their software that the architect did not spot manually, and to discover more
suitable decomposition options that the architect did not consider. The framework could be very useful also in
other companies to improve the quality of the decomposition of any monolithic system, identifying different
decomposition strategies and reducing the subjectivity of the decomposition process. Moreover, researchers

could extend our approach increasing the support and further automating the decomposition support.

1 INTRODUCTION

Legacy and monolithic system have become hard
to maintain because of tight coupling between their
internal components. Modifying a feature in one
class often involves changes in several other classes,
thereby increasing the needed development time and
effort. The decomposition into small and independent
modules is a strategy that companies may adopt to im-
prove maintainability (Parnas, 1972) (Soldani et al.,
2018). Often, at the same time, companies want to
utilize benefits of microservices, such as independent
development, scaling and deployment (Taibi et al.,
2017d).

Microservices are relatively small and au-
tonomous services deployed independently, with a
single and clearly defined purpose (Fowler and Lewis,
2014). Because of their independent deployment,
they have a lot of advantages. They can be developed
in different programming languages, they can scale
independently from other services, and they can be
deployed on the hardware that best suits their needs.

(% https://orcid.org/0000-0002-3210-3990
@ htps://orcid.org/0000-0001-7371-0773

Moreover, because of their size, they are easier to
maintain and more fault-tolerant since a failure of one
service will not break the whole system, which could
happen in a monolithic system. Since every microser-
vice has its own context and set of code, each mi-
croservice can change its entire logic from the inside,
but from the outside, it still does the same thing, re-
ducing the need of interaction between teams (Taibi
et al., 2017b) (Taibi et al., 2017¢).

However, decomposing a monolithic system into
independent microservices is one of the most critical
and complex tasks (Taibi et al., 2017d)(Taibi et al.,
2017e) and several practitioners claim the need for a
tool to support them during the slicing phase in order
to identify different possible slicing solutions (Taibi
et al., 2017d) (Taibi et al., 2018). The decomposi-
tion is usually performed manually by software archi-
tects (Taibi et al., 2017d)(Soldani et al., 2018). Up to
now, the only help that software architects can have is
based on the static analysis of dependencies with tools
such as Structure 101! while the slicing of the sys-
tem commonly is delegated to the experience of the

IStructure101 Software Architecture Environment -
http://www.structure101.com



software architect itself. Moreover, static dependency
analysis tools are not able to capture the dynamic be-
havior of the system and run-time dependencies like
frequent method calls could have an influence to both
maintainability and performance. Thus, we decided
to approach the slicing based on runtime behavior in-
stead of only considering static dependencies.

In order to ease the identification of microser-
vices in monolithic applications, we adopted a data-
driven approach for identifying microservices candi-
dates based on process mining performed on log files
collected at runtime. Our approach combines process
mining techniques and dependency analysis to recom-
mend alternative slicing solutions. Our decomposi-
tion approach can be used by software architects to
support their decisions and to help them easily iden-
tify the different business processes in their applica-
tions and their dependencies, reducing the subjectiv-
ity and the risks of related to the slicing process.

We validated this work with an industrial case
study performed in collaboration with an SME that
we supported in the migration phase, comparing the
decomposition solution proposed by the software ar-
chitect with the one obtained from the application of
our process-mining based approach.

The results show that process mining can be effec-
tively used to support the decomposition of microser-
vices and that it also supports the identification of ex-
isting architectural issues in monolithic systems. The
result can be used by companies to reduce the risk of
a wrong slicing solution, suggesting different slicing
options to the software architects and providing addi-
tional analysis of the software asset.

This paper is structured as follows. Section 2
presents the background on processes for migrating
and splitting monolithic systems into microservices.
Section 3 describes our proposed approach. Section
4 reports on the industrial case study. Section 5 dis-
cusses the results, while Section 6 draws conclusions.

2 Background and Related Work

Decomposing a system into independent subsys-
tems is a task that has been performed for years in
software engineering. Parnas (Parnas, 1972) pro-
posed the first approach for modularizing systems in
1972. After Parnass proposal, several works proposed
different approaches (Lenarduzzi et al., 2017a). Re-
cently, the decomposition of systems took on another
dimension thanks to cloud-native systems and espe-
cially microservices. In microservices, every module
is developed as an independent and self-contained ser-
vice.

2.1 The Microservice Decomposition
Process

Taibi et al. (Taibi et al., 2017d) conducted a survey
among 21 practitioners who adopted microservices at
least two years ago in order to collect their motivation
for, as well as the evolution, benefits, and issues of the
adoption of microservices. Based on the results, they
proposed a migration process framework composed
of two processes for the redevelopment of the whole
system from scratch and one process for creating new
features with a microservice architecture on top of the
existing system. They identified three different pro-
cesses for migrating from a monolithic system to a
microservices-based one. The goal of the first two
processes is to support companies that need to migrate
an existing monolithic system to microservices by re-
implementing the system from scratch. The aim of the
third approach is to implement new features only as
microservices, to replace external services provided
by third parties, or to develop features that need im-
portant changes and therefore can be considered as
new features, thus gradually eliminating the existing
system. All three of the identified processes are based
on four common steps but differ in the details.

o Analysis of the system structure. All processes
start by analyzing dependencies mainly with the
support of tools (Structure101, SchemaSpy 2, or
others)

e Definition of the new system architecture. Archi-
tectural guidelines or principles, and proposal of a
decomposition solution into small microservices
are defined. The decomposition is always done
manually.

e Prioritization of feature/service development. In
this step, all three processes identify and prioritize
the next microservices to be implemented. Some
processes prioritize microservices based on cus-
tomer value; others according to components with
more bugs; and yet others prioritize the develop-
ment of new features as microservices, expecting
that, in the long run, the new ecosystem of mi-
croservices will gradually replace each feature of
the existing monolith.

e Coding and Testing are then carried out like any
other software development project. Developers
adopt the testing strategy they prefer. However, in
some cases, testing of the different microservices
is performed by doing unit testing at the microser-
vices level and black-box testing at the integration
level.

Zhttp://schemaspy.sourceforge.net/



In this work, we focus mainly on the first two
steps, supporting companies in the analysis of the sys-
tem structure and in the identification of decomposi-
tion alternatives. The architectural guidelines should
be defined by the company based on their internal
policies.

2.2 Proposed Approaches for
Identifying Microservices

Only a limited set of research works propose ap-
proaches aimed at supporting developers in decom-
posing their systems into an optimal set of microser-
vices.

Abbott and Fischer (Abbott and Fisher, 2015) pro-
posed a decomposition approach based on the “’scala-
bility cube”, which splits an application into smaller
components to achieve higher scalability. Richard-
son (Richardson, 2017) also mentioned this approach
in his four decomposition strategies:

e “Decompose by business capability and define
services corresponding to business capabilities”;

e “Decompose by domain-driven design sub-
domain”;

e “Decompose by verb or use cases and define ser-
vices that are responsible for particular actions”;

e “Decompose by nouns or resources by defining
a service that is responsible for all operations on
entities/resources of a given type”.

The first two strategies are mostly abstract pat-
terns of human decisions (Yourdon and Constantine,
1979) while the others are based on predefined crite-
ria. Kecskemeti et al. (Kecskemeti et al., 2016) pro-
posed a decomposition approach based on container
optimization. The goal is to increase the elasticity of
large-scale applications and the possibility to obtain
more flexible compositions with other services.

Arndt and Guercio suggest decomposing a mono-
lith system using a layered architecture style, with the
outcome being highly cohesive and loosely coupled
services, such as representation and business services.
Another possibility is to start from a monolithic sys-
tem and progressively move towards a microservices-
based architecture (Zimmermann, 2017) or deliver-
ing separate microservices by splitting a development
team into smaller ones responsible for a limited group
of microservices.

Vresk et al. (Vresk and Cavrak, 2016) defined
an IoT concept and platform based on the orches-
tration of different IoT system components, such as
devices, data sources, data processors, and storage.

They recommend combining verb-based and noun-
based decomposition approaches. The proposed ap-
proach hides the complexity stemming from the vari-
ation of end-device properties thanks to the applica-
tion of a uniform approach for modeling both physi-
cal and logical IoT devices and services. Moreover, it
can foster interoperability and extensibility using di-
verse communication protocols into proxy microser-
vice components. Gysel et al. (Gysel et al., 2016)
proposed a clustering algorithm approach based on
16 coupling criteria derived from literature analysis
and industry experience. This approach is an exten-
sible tool framework for service decomposition as a
combination of a criteria-driven methods. It inte-
grates graph clustering algorithms and features pri-
ority scoring and nine types of analysis and design
specifications. Moreover, this approach introduces
the concept of coupling criteria cards using 16 dif-
ferent instances grouped into four categories: Cohe-
siveness, Compatibility, Constraints, and Communi-
cations. The approach was evaluated by integrating
two existing graph clustering algorithms, combining
actions research and case study investigations, and
load tests. The results showed potential benefits to
the practitioners, also confirmed by user feedback.

Chen et al. (Chen et al., 2017) proposed
a data-driven microservices-oriented decomposition
approach based on data flow diagrams from busi-
ness logic. Theyr approach could deliver more ratio-
nal, objective, and easy-to-understand results thanks
to objective operations and data extracted from real-
world business logic. Similarly, we adopt process
mining to analyze the business processes of a mono-
lithic system.

Alwis et al. (De Alwis et al., 2018) proposed a
heuristic to slice a monolithic system into microser-
vices based on object subtypes (i.e., the lowest gran-
ularity of software based on structural properties) and
functional splitting based on common execution frag-
ments across software (i.e., the lowest granularity of
software based on behavioral properties). This ap-
proach is the closer to our work. However, they an-
alyzed the system by means of static analysis with-
out capturing the dynamic behavior of the system and
they did not propose measures to evaluate the quality
of the slicing solution proposed.

Taibi et al., proposed a set of patterns and anti-
patterns that should be carefully considered during the
microservice decomposition (Taibi and Lenarduzzi,
2018) (Taibi et al., 2019) recommending to avoid a
set of harmful practices such as cyclic dependencies
and hard-coded endpoints but also to consider critical
anti-patterns and code smells (Taibi et al., 2017a) that
can be generated into the monolithic system.



3 THE DECOMPOSITION
FRAMEWORK

Applications built from microservices should be
as decoupled and as cohesive as possible (Fowler and
Lewis, 2014). In the case of loosely coupled services,
changes to one service should not require changes to
other services. Therefore, the developers of microser-
vices can change and deploy their microservices inde-
pendently. As reported by Sam Newman (Newman,
2015), a loosely coupled service knows as little as
it needs to about the services with which it collabo-
rates.. Therefore, developers should limit the number
of different types of calls from one service to another.

Cohesion is the degree to which the elements of
a certain class belong together. It is a measure of
how strongly related each piece of functionality of
a software module is (Fenton and Bieman, 2014).
High cohesion makes the reasoning easy and limits
the dependencies (Kramer and Kaindl, 2004). Low
coupling is commonly correlated with high cohe-
sion (Kramer and Kaindl, 2004) (Jabangwe et al.,
2015). In microservices-based systems, low cohesion
is achieved by grouping common business processes
together, so that, if developers need to change the be-
havior, they need to change only a single microser-
vice (Newman, 2015). Practitioners commonly ana-
lyze dependencies with tools such as Structure 101.
However, while dependency analysis tools can sup-
port the identification of static dependencies, they do
not enable the identification of the full execution path.
Our approach combines process mining techniques
and dependency analysis to recommend alternative
slicing solutions. In the next sub-sections, we report
the underlying assumptions of our approach and the
different steps that compose the decomposition pro-
cess.

3.1 Assumptions

The approach requires the availability of an extended
version of a log trace collected at runtime. For each
user operation performed from the user interface (e.g.,
clicking on a button), or from any entry point of a
system (e.g., APIs or command line), all the activities
must be traced from the log files. Information about
each class and method that is traversed for the execu-
tion of the operation must be included. The complete
execution must be traced completely from the entry
point (a click on a submission form or the beginning
of an operation) to the access to the database (if any)
and to the results returned to the client. An example
of data reported in the log file is shown in Table 2.
In this step, we instrument the software to produce a

log. The log trace must include events that indicate
entrance and exit of functions as well as database ac-
cesses. Each entry in the log also has a timestamp and
a session ID, to distinguish between the usage of the
same class or method from different users. The log
trace could be collected by instrumenting the source
code with Aspect Oriented Programming, by adding
the log trace into each method or with existing appli-
cations such as the Elastic APM 3 or similar, or adopt-
ing an approach similar to the one applied in (Suon-
syrjd, 2015). In case the data collection is not yet in
place, we recommend to use Elastic APM, since it al-
lows to easily instrument the code with a minor effort.
For some languages (e.g. Java and Node.js) the instru-
mentation requires the addition of one line of code to
the application configuration, specifying the type of
log trace required and the logging server URL.

3.2 The decomposition Process

Once the log files are created, companies can start
the decomposition following our 6-step process (Fig-
ure 1).

Step 1: Execution Path Analysis

In the first step, we identify the most frequently
used execution paths with a process-mining tool. In
our case, DISCO # was used to graphically represent
the business processes by mining the log files. The
same result can be obtained by any other alternative
process-mining tool. The result is a graphical repre-
sentation of the processes, reporting each class and
database table used in the business processes, with a
set of arrows connecting each class based on the log
traces. The result of this first step produces a figure
similar to the one presented in Figure 2, that allows to
understand:

e Runtime execution paths of the system. Paths
never used, even if possible, are not represented
in the figure.

e Dependencies between the classes of the system.
The arrows represent the dependencies between
methods and classes. External dependencies to li-
braries or web-services are also represented.

e The frequency of usage of each path. Process
mining tools present the most used processes with
thicker arrows

e Branches and Circular Dependencies. The graph-
ical representation allows easy discovery of cir-
cular dependencies or branches (e.g., conditional

3The Elastic APM
https://www.elastic.co/solutions/apm
“https://fluxicon.com/disco/

Libraries.



Execution Path Frequency Circular
i i Dependency
Analysis analysis Removal

Decomposition
Options

Metric- Selection of
based Decomposition
ranking Solution

Figure 1: The Decomposition Process

Path Freq.
A.a(); A.b(), B.b(), C.c(), DB.query, Table | 1000
A, Table B,
A.b(); A.cO), B.a(), C.c(), DB.query, Table | 150
A, Table B,

Table 1: Frequency analysis of each execution path

Results

WebForm | :
Ajava B.java DB.java !

—— ' 1
— i ; i
_—al) b0 __//-,quervfl !

T ]

ol I i

I

I

I

I

Figure 2: Simplified Process Example

statement that led to different path based on the
input provided), in case they exist.

The complete chain of arrows forms a candidate of a
process. Figure 2. represents a simplified example of
one business process representing the data reported in
Table 2.

Step 2: Frequency analysis of the execution
paths

The thickness of the arrows created by the DISCO
tool indicates the frequency of the calls between
classes. This makes it possible to clearly understand

Start End Sess.ID | Class Method
Time Time

00:00 00:36 S1 Form.jsp btnClick()
01:00 01:39 S1 A.java a()

01:40 01:45 N A.java b()

01:45 01:55 S1 B.java b()

01:56 02:05 S1 B.java c()

02:05 02:13 S1 DB.java query()
02:14 02:21 S1 DB TABLE A
02:22 03:28 S1 DB TABLE B
02:29 02:36 S1 B.java c()

02:36 02:45 S1 vB.java b()

02:46 02:55 S1 A.java b()

02:56 03:03 S1 A.java c()

03:04 03:16 S1 Results.jsp | render()

Table 2: Example of Log Traces (Timestamps are shortened
for reasons of space)

Execution Trace

Decomposition Option 1

Decomposition Option 2

Figure 3: Simplified Process Example

which execution path are used most frequently and
which classes are rarely or never used during runtime.
The output of this step is a table representing all the
different execution paths with the frequency of their
usage.

Step 3: Removal of Circular Dependencies

In this step, we first find circular dependencies by
analyzing the execution paths reported in the table
generated in the first Step (e.g. Table 2). This can be
done with a simple algorithm to discover cycles in the
execution paths. In the case of circular dependencies,
software architects should discuss with the develop-
ment team how to break these cycles. One example
of the patterns that can be applied to break the cycles
is Inversion of Control (Martin, 2003). However, ev-
ery cyclic dependency could need a different breaking
solution that must be analyzed carefully. The result is
a refined version of the execution path table (see Ta-
ble 2 as example).

Step 4: Identification of decomposition options

Starting with the execution paths without cyclic
dependencies obtained from Step 3, we identify dif-
ferent decomposition alternatives by visually inspect-
ing the generated graphs. The candidate processes
may have common sub-paths, i.e., the processes may
merge or split. Thus, different decomposition solu-
tions are possible. This process could also be au-
tomated by developing an algorithm that provides
all different decompositions based on the paths with
fewer intersections. However, in this case, we rely
on the expert-based decomposition. As highlighted in
Figure 3, the decomposition options need to deal with
the duplication of some classes or methods. As ex-
ample, the execution traces reported in Figure 3 show
that both the green and the orange execution traces
use j(). Therefore, software architects could propose
two decomposition alternatives. The first option in-
cludes the creation of three microservices where class
E.java() is duplicated in microservice MS2 and MS3.



The second option includes the creation of two mi-
croservices, merging MS2 and MS3. Both options
have pros and cons, but the decision of merging two
execution traces or splitting into different microser-
vices must be discussed with the team. If two mi-
croservices candidates for the splitting have different
purposes, it is reasonable to consider the splitting. If
they are doing the same thing, then it would be better
to merge them into one single microservice.

Step 5: Metric-based ranking of the decompo-
sition options

In this step, we identify three measures to help
software architects to assess the quality of the decom-
position options identified in Step 4: Coupling, Num-
ber of classes per microservices, Number of classes
that need to be duplicated.

Coupling

The decomposition to microservices should mini-
mize coupling and maximize cohesion. Coupling and
cohesion can be calculated with different approaches.
While coupling can be obtained from our log traces,
for all the cohesion measures we also need to know
about the access to the local variables of each class,
which makes it impossible to calculate them from the
data reported in the log traces. However, coupling is
commonly considered as inversely proportional to co-
hesion (Jabangwe et al., 2015). Therefore, a system
with low coupling will have a high likelihood of hav-
ing high cohesion (Jabangwe et al., 2015). We define
the Coupling Between Microservice (CBM) extend-
ing the well-known Coupling Between Object (CBO)
metric proposed by Chidamber and Kemerer (Chi-
damber and Kemerer, 1994). CBO represents the
number of classes coupled with a given class (effer-
ent couplings and afferent couplings). This coupling
can occur through method calls, field accesses, inher-
itance, arguments, return types, and exceptions.

We calculate the relative CBM for each microser-
vice as follows:

Number of external Links

CBMus; = Number of Classes in the Microservice

where Number Of External Links represents the
number of calls to external services used in each class
of microservice. An external service linked several
times by different classes of the same microservice is
only counted once. External services could be other
microservices, external APIs, etc.

CBM is calculated for each microservice indepen-
dently and presented in a table for the next step.

Number of classes per microservice

This measure helps to understand how big the mi-
croservice identified is and to identify if there are
microservices that are too big compared to others.

the number of classes should be minimized since the
smaller the number of classes the more independent
its development can be. Considering the example re-
ported in Figure 3, the decomposition option 1 has 7
classes while option 2 has six classes.

Number of classes that need to be duplicated

In some cases, several classes will be in com-
mon between two execution traces. As example, the
method j in Class E (Figure 3) is used by two exe-
cution traces. In the example depicted in Figure 3,
decomposition option 1 has one class that needs to be
duplicated, while option 2 requires no classes to be
duplicated.

This measure helps to reason about the different
slicing options, considering not only the size of the
microservices but also the number of duplications,
that will be then reflected in the development of the
microservices. Duplicated classes should be avoided
since the duplication adds to the size of the system
and its maintenance.

Step 6: Selection of the decomposition solution

This is the final step where, based on the different
decomposition alternatives identified in Step 4, and
on the measures collected in Step 5, software archi-
tects can decide which solution to adopt by merg-
ing or splitting existing processes. Software archi-
tects could consider the recommendation provided by
our decomposition process and discuss with the team
which solution is most suitable for them, consider-
ing the organizational structure. Our process does not
recommend the best decomposition solution, but pro-
vides a reasoning framework on the possible decom-
position options.

4 Validation: Industrial Case study

In this section, we validate the decomposition
framework proposed in Section III. With this study,
we aim to understand whether our approach can sup-
port developers in easily identifying different slicing
options. For this purpose, we performed an indus-
trial case study to compare the ad-hoc decomposition
solution proposed by the software architect with the
solutions proposed by our approach.

According to our expectations, we formulated the
goal of the case study as:

Analyze the proposed decomposition solutions

for the purpose of evaluating and comparing

with respect to the perceived slicing easiness and
usefulness

in the context of the migration of a monolithic system
to microservices

from the point of view of software architects.



We formulated the questions of the case study
as follows and further derived questions and metrics
from them:

RQ1 QI: Does adopting the proposed decompo-
sition framework ease the identification of
different microservices?

RQ2 Q2: What do the developers, software ar-
chitects, and project manager think about
the applicability of this approach?

RQ3 Q3: Are the developers willing to use the
approach in the future?

We answered our questions by surveying the
project manager and the software architect who first
manually applied the decomposition process as usual
and then evaluate the decomposition options proposed
by our framework. The measures identified for the
questions were derived from the Technology Accep-
tance Model (Venkatesh, 2000). All questions were
evaluated based on a 5-point ordinal Likert scale with
the following options: 1 = strongly disagree, 2 = dis-
agree, 3 = neither agree nor disagree, 4 = agree, 5 =
strongly agree.

Q1 Perceived ease of use: Here we aim to
compare the perceived easiness of our approach
with that of the experience-based (ad-hoc) approach.
We adopted the Technology Acceptance Model
(Venkatesh, 2000) to collect measures about the ease
of use of our approach, identifying the following met-
rics:

e The process-mining approach would be easy for
me to use during the decomposition phase.

e It would be easy for me to become skillful at us-
ing the process-mining approach to decompose a
monolithic system.

Q2 - Applicability: What do the participants
think about the applicability of our approach? To an-
swer this question, we collected the time overhead
needed to perform the process-mining approach. Per-
ceived usefulness: measures the degree to which the
participants considered the approach useful for mak-
ing project decisions. The evaluated criteria were:

e [ am sure that I was able to better decompose the
system with this approach.

e [ was able to find alternative decomposition strate-
gies.

e [ was able to better decompose the system, but the
time required with the new approach is too much
compared to its benefits.

e [ was able to better decompose the system, but the
effort needed to trace the information on the log

file is too much compared to the benefits of the
approach.

e The approach helped me to understand existing
architectural issues in the existing monolithic sys-
tem

Perceived understandability: measures the ef-
fort needed by the subject to understand the approach
built or whether the participants will need to exert lit-
tle effort to understand the relationship with the sys-
tem concepts.

o It was easy for me to understand how the approach
works. Perceived easiness: measures the degree
to which the subject believed that he or she was
able to make project decisions easier than without
the approach.

e [t was easy for me to identify decomposition op-
tions with the support of this approach.

e [ was able to identify decomposition options with
less effort compared to the ad-hoc manual decom-
position.

e [ was able to identify decomposition options more
accurately.

Self-efficacy by applying the technique: The
perceived ability to decompose a monolithic system
into microservices by means of our proposed ap-
proach.

e [t was easy for me to keep an overview of the
project and of the different decomposition op-
tions.

e The approach helped me to increase the quality of
the decompositions.

Q3 - Willingness to use our approach in the
future: With this question, we aim to understand
whether the company would be willing to use our sys-
tem in the future. We collected this measure with the
following question:

o [ will adopt this approach in the future.

Table 3 report the list of questions and the results
of this study.

4.1 Study Context

The approach was applied in an SME in Milan (Italy).
The company develops a document management sys-
tem for bookkeeping, for Italian tax accountants. The
goal of the system is to make it possible to manage the
whole bookkeeping process, including management
of the digital invoices, sending the invoice to the Min-
istry of Economic Development, and fulfilling all the
legal requirements, which usually change every year.



. . Project Software
Questions Metrics Manager | Architect
The proposed approach would be easy for me to use in the 4 5
. decomposition phase.
QI - Perceived ease of use It would be easy for me to become skillful at using the process-mining 3 4
approach to decompose a monolithic system.
I am sure that I was able to better decompose the system with this 5 5
approach.
1 was able to find alternative decomposition strategies. 5 5
I was able to better decompose the system but the time required with the 4 4
Perceived new approach is too much compared to its benefits.
usefulness I was able to better decompose the system but the effort needed to trace 2 1
the information on the log file is too much compared to the benefits of
the approach.
The approach helped me to understand existing architectural issues in the 4 5
02- monolithic system.
Applicability | Perceived It was easy for me to understand how the approach works. 4 4
understandability
It was easy for me to identify decompositions options with the support of 3 4
Perceived this approach. » .
. I was able to identify decomposition options with less effort compared to 5 4
easiness age
the ad-hoc manual decomposition.
I was able to identify decomposition options more accurately. 5 5
It was easy for me to keep an overview of the project and of the different 4 4
Self-efficacy decomposition options.
The approach helped me to increase the quality of the decompositions. 5
03 - Willingness to use our I will adopt this approach in the future. 3 3
approach

Table 3: The Questionnaire adopted in this study - Results

The system is developed by two teams of 4 de-
velopers, plus two part-time developers following the
moonlight scrum process (Taibi et al., 2013), the soft-
ware architect and a project manager. currently being
used by more than 2000 tax accountants, who need
to store more than 20M invoices per year. The system
has been developed for more than 12 years and is now
composed of more than 1000 Java classes.

The Italian government usually updates the book-
keeping process between December and January of
every year, which involves not only changing the tax
rate but also modifying the process of storing the in-
voices. However, tax declarations can be made start-
ing in March/April of each year. Therefore, in the best
case, the company has between two to four months to
adapt their software to the new rules in order to enable
tax accountants to work with the updated regulations
from March/April.

Up to now, the company used to hire a con-
sultancy company to help them during these three
months of fast-paced work. However, since the sys-
tem is growing year after year, they decided to mi-
grate to microservice to facilitate maintenance of the
system (Saarimiki et al., 2019) and to distribute the
work to independent groups, reducing communica-
tion needs and supporting fast delivery (Taibi et al.,
2017c)(Taibi et al., 2017b).

4.2 Study Execution

We performed this study in three steps:

Step1 Ql: The software architect manually

identified the different microservices and

a decomposition strategy.

Q2: We applied our 6-steps process

to identify different decomposition solu-

tions and then we compared them to the

solution proposed by the software archi-

tect.

Step3 Q3: The software architect and the
project manager provided feedback on
the usefulness of our approach.

Step 2

4.3 Case Study Results

With the support of the development team, the soft-
ware architect manually identified a set of microser-
vices. He first drew the dependency graph with Struc-
ture 101.

Then we applied our approach to mine their log
files. The company already logged all the operations
of their systems with Log4] >, tracing all the informa-
tion reported in Table 2, together with other informa-
tion such as the user involved in the process, the ID

Shitps://logging.apache.org/log4i



First Microservice Second Microservice

77777777777777777777777777777777777777

{ Valigate ] [ Maininvoice “

i N :

I )

] ! i ]
]

Figure 4: The Proposed Slicing Options (Simplified exam-
ple)

of the customer with which the tax accountant is cur-
rently working, and other information related to the
current invoices.

From this information, we identified 39 differ-
ent business processes with DISCO. For confidential-
ity reasons, we can only disclose a high-level and
anonymized portion of the system. Figure 4 depicts
an example of two business processes (save invoice
and view invoice). We then calculated the frequency
of each process. DISCO can automatically draw
thicker arcs between processes, thereby simplifying
the approach.

Of 39 processes, three processes had been used
only three times during one year of logging, 17 pro-
cesses less than 1000 times, and 12 processes between
1000 and 10K times; five processes had been used
more than 60B times. This distribution was initially
expected for most of the processes. The most fre-
quently used processes were due to the submission of
the invoices from each tax accountant.

Based on the previous step, the software architect,
together with the project manager, identified three
slicing options, taking care to avoid circular depen-
dencies between services, especially in the case of
the three classes that suffered from an existing cir-
cular dependency. Therefore, we proceeded with the
calculation of cohesion and coupling of the different
slicing options. The CBM was counted from the out-

going calls reported in the output of DISCO tool.

The first solution was composed of 25 microser-
vices (19 classes duplicated) with an average CBM of
0.16; the second solution was composed of 27 mi-
croservices (21 classes duplicated) with an average
CBM of 0.16; while the third solution was composed
of 21 microservices (14 classes duplicated) with an
average CBM of 0.22. Table 4 shows the measures
collected for five microservices of each decomposi-
tion solution.

The first initial result is the list of classes, meth-
ods, and database tables used in the different pro-
cesses together with their frequency of usage. More-
over, the solution proposed by the software archi-
tect had higher coupling and was more complex than
the ones identified with the process-mining approach.
The analysis of log files also shows that some pro-
cesses were used much more than expected while one
process traverses an unexpected set of classes per-
forming an incorrect process. Moreover, they also
discovered three unexpected circular dependencies
and the presence of two harmful code smells (Taibi
etal., 2017a).

One of the most important decision drivers that
lead to the selection of one of the three identified so-
lutions, was the type of decomposition. One of the
selected decomposition options proposed to slice the
system based on the need of creating more shared li-
braries. Shared libraries commonly increase the com-
plexity of the migration, and increase the maintenance
complexity. The other reason was related to the de-
velopers knowledge and the code ownership. The se-
lected solution allowed to split the systems reducing
the need of re-organizing the teams and re-allocating
the responsibility of the code. The developers pre-
ferred to migrate the code they have written in the
past, instead of migrating the code written by other
developers.

5 Discussion

In this work we proposed a decomposition process
to slice monolithic systems into microservices based
on their runtime behavior.

The main benefit of analyzing runtime informa-
tion is the availability of the data on the usage of each
component, together with the dynamic analysis of de-
pendencies. We identified several dead methods and
classes that were never used at runtime and we also
spotted some cyclic dependencies. The static analy-
sis of dependencies would have spotted the circular
dependencies but not all the dead code. Moreover,
thanks to the information obtained from the frequency



Decomposition Solutions
MS Solution 1 Solution 2 Solution 3
CBM | #Links | #Classes| #Dupl. | CBM | #Links | #Classes #Dupl. | CBM | #Links | #Classes| #Dupl.
Classes Classes Classes
MSI1 | 0.08 6 75 2 026 | 7 27 0 0.13 | 5 39 2
MS2 | 0.29 9 31 4 0.33 | 11 33 2 026 | 7 27 0
MS3 | 0.08 2 25 0 0.06 | 2 33 1 033 | 10 31 4
MS4 | 0.16 7 43 2 0.08 | 4 50 3 0.17 | 7 41 3
MS5 | 0.17 5 30 0 0.18 | 10 56 0 0.14 | 4 28 0

Table 4: Decomposition metrics for the decomposition options

of usage of each method, we also better understood
which feature is used more, we prioritized the devel-
opment and the slicing of the monolithic system dif-
ferently. Without the information on the frequency of
usage of methods, we could have created a microser-
vice that would have done most of the computational
tasks.

We are aware about possible threats to validity.
We tried to reduce them by applying a common pro-
cess mining tool (DISCO), that has been developed
for several years and has been adopted by several
companies and universities. However, the tool could
have identified some processes incorrectly. More-
over, we are aware about the complexity related to
the data collection, since to adopt our process, com-
panies need to instrument their code to collect the log
files at the method level. About the generalizability of
the results, the validation case study was based on an
analysis of the processes of one company. The project
manager and the software architect had a limited ex-
perience decomposing systems into microservices but
the authors of this paper have more than four years of
experience in supporting companies in decomposing
systems into microservices and closely followed them
during the migration.

Companies could benefit from our lessons
learned, by applying this process to decompose their
monolithic system, but also monitoring the runtime
behaviors or existing microservices to continuously
understand possible issues. However, despite this ap-
proach being very beneficial in our company, the re-
sults could have a different impact on other compa-
nies. Researchers can benefit from this approach and
extend it further. New optimization metrics could
be defined, and in theory, it would be possible to
propose an automated decomposition approach that
would identify the slices by maximizing the metrics
identified. Genetic algorithms could be a possible so-
lution for this idea.

6 Conclusion

The decomposition of monolithic systems into mi-
croservices is a very complex and error-prone task,
commonly performed manually by the software archi-
tect.

In our work, we demonstrated the usefulness of
existing process-mining approaches for decomposing
monolithic systems based on business processes iden-
tified from the process-mining approach.

Our goal is not to create a tool to support the auto-
mated slicing, but to provide an extra support to soft-
ware architect, to help them in identifying different
slicing options reducing the subjectivity.

We first proposed a simple process-mining ap-
proach to identify business processes in an existing
monolithic solution based on three steps. In the first
step, a process-mining tool (DISCO or similar) is used
to identify the business processes. In the second step,
processes with common execution paths are clustered
and a set of microservices is proposed based on busi-
ness processes with similar behavior, paying attention
to not include circular dependencies. In the third step,
we propose a set of metrics to evaluate the decompo-
sition quality.

We validated our approach in an industrial case
study. The software architect of the SME together
with the project manager identified a decomposition
solution and asked our consultancy to assess it and to
identify other possible decomposition options. This
enabled us to compare our process-mining approach
with the decomposition solution they proposed.

As a result, we found that our process simplified
the identification of alternative decomposition solu-
tions, and provided a set of measures for evaluat-
ing the quality of the decomposition. Moreover, our
process-mining approach keeps track of the classes
and methods traversed by each process, which does
not only help to identify business processes but also
makes it possible to discover possible issues in the
processes, such as unexpected behavior or unexpected
circular dependencies.

In case log data is available, or in case it is possi-
ble to collect logs, we highly recommend that compa-



nies planning to migrate to microservices should use
it, considering the very low effort needed to identify
alternative solutions with our approach (less than two
working days) and the possible benefits that can be
achieved.

Future works include the development of a tool
to facilitate the identification of the process, the au-
tomatic calculation of the metrics, and identification
of other measures for evaluating the quality of the
decomposition. We are also planning to further em-
pirically validate this approach with other companies
and to include dynamic measures for evaluatinfg the
quality of the system at runtime (Lenarduzzi et al.,
2017b) (Tosi et al., 2012). In the future, we are also
planning to adopt mining software repositories tech-
niques to identify the areas that changed simultane-
ously in the past, to help developers to understand
pieces of code connected to each other.

Another possible future work is to include identi-
fication of partial migration, i.e., migration of a lim-
ited set of processes from a monolithic system. Fi-
nally, we are also considering to extend this work by
proposing not only different decomposition options
but also a set of patterns for connecting microser-
vices based on existing common microservices pat-
terns (Newman, 2015) (Taibi et al., 2018) and anti-
patterns (Taibi and Lenarduzzi, 2018)(Taibi et al.,
2019).

REFERENCES

Abbott, M. L. and Fisher, M. T. (2015). The Art of Scalabil-
ity: Scalable Web Architecture, Processes, and Orga-
nizations for the Modern Enterprise. Addison-Wesley
Professional, 2nd edition.

Chen, R, Li, S., and Li, Z. (2017). From monolith to mi-
croservices: A dataflow-driven approach. In 2017
24th Asia-Pacific Software Engineering Conference
(APSEC), pages 466-475.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Trans. Softw.
Eng., 20(6):476-493.

De Alwis, A. A. C., Barros, A., Polyvyanyy, A., and Fidge,
C. (2018). Function-splitting heuristics for discovery
of microservices in enterprise systems. In Pahl, C.,
Vukovic, M., Yin, J., and Yu, Q., editors, Service-
Oriented Computing, pages 37-53, Cham. Springer
International Publishing.

Fenton, N. and Bieman, J. (2014). Software Metrics: A
Rigorous and Practical Approach, Third Edition. 3rd
edition.

Fowler, M. and Lewis, J. (2014). Microservices.

Gysel, M., Kolbener, L., Giersche, W., and Zimmermann,
0. (2016). Service cutter: A systematic approach to
service decomposition. In European Conference, ES-
OCC 20162016, pages 185-200.

Jabangwe, R., Borstler, J., Smite, D., and Wohlin, C.
(2015). Empirical evidence on the link between
object-oriented measures and external quality at-
tributes: A systematic literature review. Empirical
Softw. Engg., 20(3):640-693.

Kecskemeti, G., Marosi, A. C., and Kertesz, A. (2016).
The entice approach to decompose monolithic ser-
vices into microservices. In 2016 International Con-
ference on High Performance Computing Simulation
(HPCS), pages 591-596.

Kramer, S. and Kaindl, H. (2004). Coupling and cohesion
metrics for knowledge-based systems using frames
and rules. ACM Transaction on Software Engineer-
ing Methodologies, 13(3):332-358.

Lenarduzzi, V., Sillitti, A., and Taibi, D. (2017a). Analyz-
ing forty years of software maintenance models. In
39th International Conference on Software Engineer-
ing Companion, ICSE-C *17. IEEE Press.

Lenarduzzi, V., Stan, C., Taibi, D., and Venters, G. (2017b).
A dynamical quality model to continuously monitor
software maintenance. In //th European Conference
on Information Systems Management (ECISM).

Martin, R. C. (2003). Agile Software Development: Prin-
ciples, Patterns, and Practices. Prentice Hall PTR,
Upper Saddle River, NJ, USA.

Newman, S. (2015). Building Microservices. O’Reilly Me-
dia, Inc., 1st edition.

Parnas, D. L. (1972). On the criteria to be used in de-
composing systems into modules. Commun. ACM,
15(12):1053-1058.

Richardson, C. (2017). Pattern: Microservice architecture.

Saarimiki, N., Lomio, F., Lenarduzzi, V., and Taibi, D.
(2019). Does Migrate a Monolithic System to Mi-
croservices Decreases the Technical Debt? arXiv e-
prints, page arXiv:1902.06282.

Soldani, J., Tamburri, D. A., and Heuvel, W.-J. V. D. (2018).
The pains and gains of microservices: A systematic
grey literature review. Journal of Systems and Soft-
ware, 146:215 — 232.

Suonsyrjd, S. (2015). Designing an unobtrusive analyt-
ics framework for monitoring java applications. In
International Workshop on Software Measurement
(IWSM), pages 160-175.

Taibi, D., Diebold, P., and Lampasona, C. (2013). Moon-
lighting scrum: An agile method for distributed
teams with part-time developers working during non-
overlapping hours. In ICSEA - International Confer-
ence on Software Engineering and Advances. IARIA
XPS Press.

Taibi, D., Janes, A., and Lenarduzzi, V. (2017a). How de-
velopers perceive smells in source code: A replicated
study. Information & Software Technology, 92:223—
235.

Taibi, D. and Lenarduzzi, V. (2018). On the definition of
microservice bad smells. [EEE Software, 35(3):56—
62.

Taibi, D., Lenarduzzi, V., Ahmad, M. O., and Liukkunen,
K. (2017b). Comparing communication effort within
the scrum, scrum with kanban, xp, and banana devel-
opment processes. In Proceedings of the 21st Inter-



national Conference on Evaluation and Assessment in
Software Engineering, EASE’17, pages 258-263.

Taibi, D., Lenarduzzi, V., Janes, A., Liukkunen, K., and Ah-
mad, M. O. (2017¢c). Comparing requirements decom-
position within the scrum, scrum with kanban, xp, and
banana development processes. In Agile Processes
in Software Engineering and Extreme Programming,
pages 68-83.

Taibi, D., Lenarduzzi, V., and Pahl, C. (2017d). Processes,
motivations, and issues for migrating to microservices
architectures: An empirical investigation. IEEE Cloud
Computing, 4(5):22-32.

Taibi, D., Lenarduzzi, V., and Pahl, C. (2018). Architec-
tural patterns for microservices: a systematic mapping
study. 8th International Conference on Cloud Com-
puting and Services Science (CLOSER2018).

Taibi, D., Lenarduzzi, V., and Pahl, C. (2019). Microser-
vices architectural, code and organizational anti-
patterns. Springer (in press).

Taibi, D., Lenarduzzi, V., Pahl, C., and Janes, A. (2017e).
Microservices in agile software development: a

workshop-based study into issues, advantages, and
disadvantages. In XP Workshops, pages 23:1-23:5.
ACM.

Tosi, D., Lavazza, L., Morasca, S., and Taibi, D. (2012).
On the definition of dynamic software measures. In
ESEM, pages 39-48. ACM.

Venkatesh, V. (2000). Determinants of perceived ease
of use: Integrating control, intrinsic motivation, and
emotion into the technology acceptance model. Infor-
mation Systems Research, 11(4):342-365.

Vresk, T. and Cavrak, I. (2016). Architecture of an in-
teroperable iot platform based on microservices. In
MIPRO, pages 1196-1201. IEEE.

Yourdon, E. and Constantine, L. L. (1979). Structured De-
sign: Fundamentals of a Discipline of Computer Pro-
gram and Systems Design. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1st edition.

Zimmermann, O. (2017). Microservices tenets. Computer
Science - Research and Development, 32(3):301-310.



